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and Dezső Szalay

University of Bonn and CEPR

July, 2024

Abstract

We perform distributional comparative statics in a cheap talk model of

adaptation. Receiver borne adaptation costs drive a wedge between the objec-

tives of sender and receiver that is increasing in the magnitude of adaptation.

We allow for infinite supports with infinite disagreement at the extremes and

compare communication to unconstrained delegation. We study increases in

risk that arise from transformations of the state variable. We find that linear

transformations (implying increases in variance) decrease communication and

delegation payoffs but do not change their ranking. By contrast, increasing,

convex transformations (implying increases in tail risk) decrease the commu-

nication payoff relative to the delegation payoff. Our finding extends to the

comparison of distributions with thin versus heavy tails.
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1 Introduction

Catastrophes, in many instances, result from a combination of extreme circumstances

and insufficient responses to them. Responses are often insufficient because of costs

that are borne by decision makers. Are there simple ways to mitigate catastrophic

outcomes in a world in which extreme circumstances, and the significant cost of

responses to them, are relatively likely? If an expert realizes that they are in the

shadow of a looming catastrophe, can the expert communicate successfully to the

decision maker and induce an action that is sufficient to mitigate the catastrophe?

For an illustration of unusually extreme circumstances combined with insufficient

responses, consider the following three examples with catastrophic outcomes. Experts

suggested adjusting drilling procedures prior to the blowout on the Deepwater Hori-

zon in 2010; BP however decided not to change its procedures against expert advice.1

At the time of the Challenger space shuttle explosion in 1986, engineers warned in

vain about potential problems arising from low temperatures.2 Officials delayed the

evacuation of the Ahr valley in 2021 despite experts’ warnings of an extreme rise of

the water level and subsequent flooding.3 The examples feature conditions of extraor-

dinarily high pressure, extreme temperature or an exceptionally high rise in the water

level, combined with substantial costs of adaptation in each case. Communication

prior to these impending catastrophes did not, evidently, help to avert them; expert

advice was not taken into account sufficiently.

These are examples of organizational failures, for which there are many reasons

(see Garicano and Rayo (2016)). We focus on a class of such organizational failures

that stem from a combination of misalignment of incentives (because of adjustment

costs) and tail risk, an increased likelihood of extreme events.4 In particular, we

1For a detailed report, see National Comission on the BP Deepwater Horizon oil spill and offshore
drilling (2011) and Section 7.

2See, for example, https://www.nytimes.com/2016/03/26/science/robert-ebeling-challenger-
engineer-who-warned-of-disaster-dies-at-89.html

3See, for example, https://www.nytimes.com/2021/07/16/world/europe/germany-floods-
climate-change.html

4We borrow the term tail risk from the finance literature. Mandelbrot (1963) initiated the study
of return distributions with fatter tails than the Gaussian distribution. The term is now also used
for distributions that have heavier tails than the exponential distribution. Since we use the same
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investigate three questions: How well does communication work in environments

where the risk of extreme circumstances, and the costs of mitigating them, are high?

How do changes in the environment impact communication? Does an increase in risk

impact the decision to delegate the decision rights to an expert?

Formally, this paper studies communication between a scientific expert (sender)

and a decision-maker (receiver). The sender observes the state of the world and

sends a cheap talk message (Crawford and Sobel (1982)) to the receiver who then

takes an action. The sender as well as the receiver care about the appropriate action

being taken given the state. The receiver, however, faces additional concerns such

as political costs or firm-specific costs of adaptation. Formally, sender and receiver

share a common loss function. In addition to this common loss, the receiver faces a

cost of adaptation. The expected optimal action requires no adaptation, so there is

agreement. The costs drive a wedge between the objectives of the decision-maker and

the expert; this wedge is increasing in the magnitude of adaptation. As we allow for

an infinite support of the state, there is infinite disagreement at extreme states.

Our main focus is on the impact of the distributional environment on commu-

nication, in particular, of the relative likelihood of extreme states and extreme dis-

agreement. We show that equilibrium payoffs decrease as extreme states become more

likely. We provide stochastic orders that allow us to rank distributions with respect to

their impact on equilibria and on payoffs. We compare the communication outcomes

to the outcomes under the alternative decision protocol of unconstrained delegation,

where the decision-maker delegates decision-making to the expert. We find that del-

egation becomes relatively more attractive when extreme conflicts become relatively

more likely, i.e., when the tail risk increases.

To be more precise, we establish existence and essential uniqueness of cheap talk

equilibria that induce a given number of receiver actions up to a countable infinity

(Proposition 1). To study the impact of increased risk on communication, we analyze

two types of transformations of the state variable. We first consider linear trans-

stochastic orders whether the distributions have finite or infinite supports, we use the term ‘tail risk’
throughout.

3



formations that scale the state proportionally to the original state and thus increase

the variance, but maintain the shape of the distribution. We show that the effect

is a linear spread of the equilibrium actions, resulting in a reduction of expected

utilities proportional to the increase in variance (Lemma 1). Since the payoff under

delegation is also proportional to the variance, such a linear transformation never

implies a switch in the optimal decision-procedure from communication to delegation

(Corollary 1).

Second, we consider combinations of linear and increasing, convex transformations

of the state variable. The linear transformation scales the distribution and hence con-

trols for the variance.5 The increasing, convex transformation changes the shape of

the distribution such that the tails of the distribution become heavier, hence increas-

ing the kurtosis. In this case, we say that the distribution becomes more tail-risky.

Formally, we consider symmetric distributions and assume that the distributions of

the absolute values of the states are ordered in the convex transform order (van Zwet

(1964)). This implies that one distribution is more skewed towards large absolute val-

ues than the other. By symmetry, skewness on each side of the prior mean translates

into a higher kurtosis of the overall distribution. Building on Jensen’s inequality, we

show that a more convex, tail-risky, environment implies that the equilibrium critical

types are higher in the quantile-space (Proposition 2).

For our comparison of receiver equilibrium actions and payoffs, we complement

the convex transform order with the uniform conditional variability order (Whitt

(1985)). The order implies a unimodal likelihood ratio: the less variable distribution

of absolute values is stochastically higher for small deviations from the prior mean,

while the more variable distribution is stochastically higher for large deviations from

the prior mean. The two orders together imply that the densities of the absolute values

cross exactly twice: in the less tail-risky environment, intermediate adjustments are

more often required, whereas in the more tail-risky environment, very small and very

large adjustments are more often required.

5Since scaling is possible for any distribution, it is without loss of generality to consider trans-
formations that keep the variance constant.
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For sufficiently high marginal costs of adaptation, all the sender equilibrium crit-

ical types are close to the prior mean. In combination with the ordering of the

quantiles, we show that the distribution of receiver actions in the less tail-risky en-

vironment is a mean-preserving spread of the corresponding actions in the more tail-

risky environment (Proposition 3). Thus, there is more information transmission in

the less tail-risky environment.

Intuitively, the likelihood ratio of the distributions is hump-shaped, so that the less

tail-risky distribution features stochastically higher deviations from the prior mean for

small deviations, while the more tail-risky distribution features stochastically higher

deviations from the prior mean for large deviations. Increases in the marginal costs

of adaptation move the receiver’s actions closer to the prior mean. Thus, insufficient

responses to outliers are the reason why the more tail-risky distribution induces lower

expected payoffs.

To quantify our comparison and the ‘sufficiently’ high marginal cost of adaptation,

we rely on methods similar to those of dynamic programming. For certain classes of

distributions, we derive a lower bound on payoff gains that result from communi-

cation (Proposition 4). We use this bound to link tail risk to the choice between

communication and delegation. For the two-sided generalized Pareto distribution, we

characterize the locus of indifference between the two institutions (Proposition 5), and

show that in more tail-risky environments there is more delegation at the optimum.

Comparing the Gaussian distribution to the more tail-risky Laplace distribution, we

confirm that there is more communication in the less tail-risky Gaussian environment

(Proposition 6).

Last but not least, we consider environments that feature thin – sub-exponential

– tails, versus those that feature heavy – super-exponential – tails. This compari-

son entails distributions of the absolute values that are ordered in both the convex

transform order and the uniform conditional variability order. Consequently, our

result, that communication payoffs decrease as tail risk increases, extends to these

environments (Proposition 7).

The remainder of the paper is organized as follows. After discussing the related
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literature, we present our formal model in Section 2. Equilibria of the communication

game are derived in Section 3. This section also studies the impact of linear transfor-

mations on equilibria and payoffs. We use the uniform and triangular distributions

to illustrate our results. In Section 4, we consider increasing, convex transformations

of the state variable. We combine stochastic orders of state distributions to compare

equilibria and payoffs for different classes of distributions. In Section 5, we introduce

a dynamic programming method to quantify gains from communication. We apply

our findings to the generalized Pareto distribution and the Gaussian distribution. An

extension to a comparison of thin versus heavier tailed distributions is given in Sec-

tion 6. In Section 7, we revisit the Deepwater Horizon example in more detail, and

conclude. All proofs are in the appendix.

Related Literature

Ours is a contribution to the literature on adaptation in organizations. Alonso et al.

(2008) and Rantakari (2008) investigate whether decision-authority should reside at

the top of a hierarchy or further down at the level of division-management. These

papers, as ours, use the communication model with linear state-dependent bias that

was first studied by Melumad and Shibano (1991). Imperfect profit sharing in their

models, and adaptation costs in ours, provide a micro foundation for such linear

conflicts. Since the adaptation costs in our model are increasing in the size of the

adjustment, the wedge between the expert’s and the receiver’s objective is largest at

the extremes of the support. This gives a natural connection to catastrophic outcomes

in extreme states, and to such outcomes becoming more likely if the state distribution

features heavier tails. Our analysis can be applied directly to situations in which the

state can a priori only take positive values. Moreover, it can be extended to the

Crawford and Sobel (1982) model with disagreement everywhere. We leave this to

future work.

Other recent contributions to the adaptation literature include Rantakari (2013),

Dessein et al. (2022), and Liu and Migrow (2022). Rantakari (2013) allows firms to

choose the compensation and the authority structure jointly. He finds that firms that
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operate in volatile environments are characterized by decentralized decision mak-

ing and a compensation with focus on performance at the division level. Dessein

et al. (2022) provide a theoretical model predicting that an environment that is more

volatile locally results in more decentralized decision making only when the need for

coordination across sub-units is low. Liu and Migrow (2022) analyze a model of disclo-

sure with information acquisition. They show that the distribution of an uncertainty

parameter has an important impact on the optimal allocation of decision-rights in

their problem.

We bring new tools to this literature which typically focuses on volatility in the

sense of an increase in the variance of a uniform state. Because we study the impact

of heavier tails on unbounded supports, instead of the usually assumed compact state

space, we need to build our model from scratch. We prove existence and uniqueness

of equilibria, and study the role of risk induced by linear and increasing, convex

transformations. We provide comparative statics in terms of stochastic orders which

have not been studied before in the context of strategic communication.

Related cheap talk models with endogenous conflicts are Deimen and Szalay (2019)

and Antić and Persico (2020). Antić and Persico (2020) consider various ways in which

conflicts can arise endogenously, e.g. trading in a stock market prior to communica-

tion in a firm. In Deimen and Szalay (2019) a sender acquires noisy signals about

a multidimensional state. Depending on the sender’s choice of information, conflicts

with the receiver arise. That paper shows that communication is better than delega-

tion in a multidimensional elliptical two-sided generalized Pareto environment with

heavy tails. Our analysis here builds on our earlier work and provides extensions and

generalizations in various directions.

The main new perspective that we bring to the comparison of communication and

delegation is the impact of arbitrarily large conflicts. This complements the focus

of Dessein (2002), who is the first to study this comparison in the seminal paper of

Crawford and Sobel (1982). He shows that whenever interests are sufficiently aligned

such that influential communication is possible, the receiver prefers to delegate. As

the conflict between sender and receiver becomes arbitrarily small, Dessein (2002)
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shows that payoffs from unconstrained delegation approach first-best payoffs faster

than those arising from strategic communication.6 In our setup, increasing tail risk

has such a detrimental impact on communication that delegation becomes relatively

better. Compared to the case of a constant, additive bias, our linear, increasing bias

makes it even more surprising that the receiver prefers to delegate when extreme

states and extreme disagreement become more likely.

Chen and Gordon (2015) also perform distributional comparative statics in strate-

gic information transmission. They show that information transmission is improved

when ideal choices are closer (‘games are nested’) and a regularity condition is sat-

isfied. As an application, they compare communication to delegation for a Beta

distribution. They state conditions on bias and variance such that informative com-

munication is feasible and dominates delegation. Key differences between the papers

are that we allow for an agreement point, for unbounded supports, and that we con-

sider increasing, convex transformations.

With few exceptions, the economic theory literature has paid little attention to

the shape of distributions. Jewitt (2004) offers an insightful overview of problems

in which shape matters. He provides connections among partial orders that describe

shape, among them van Zwet’s convex transform order. More recently, Di Tillio et al.

(2021) show that shapes of distributions, measured by the convex transform order,

have a decisive effect on the amount of information contained in a given number

of highest sample realizations, compared to the same number of randomly selected

data. For example, a given number of highest bids in an auction can contain more

or less information than the same number of randomly chosen bids. We study the

impact of shape of distributions in cheap talk games. We find that increasing, convex

transformations decrease the gains under communication. These transformations

do not impact the delegation payoff, more often rendering delegation optimal to

communication.

6See Dilmé (2022) for approximate characterizations of strategic information transmission equi-
libria with small biases.
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2 Model

We consider a game with two players, a sender S and a receiver R. Sender and receiver

have preferences that reflect a common adaptation motive captured by quadratic

payoffs that depend on an action y ∈ R, and on the realization θ of the state of the

world Θ. For the sender,

uS (y, θ) = − (y − θ)2 .

The receiver faces an additional cost of adaptation c (y) = γ · y2, with γ > 0 such

that uR (y, θ, γ) = − (y − θ)2 − γ · y2. Defining a := 1
1+γ

, the ideal choice functions of

sender and receiver are yS (θ) = θ and yR (θ) = a · θ, respectively, where a ∈ (0, 1) as

γ > 0. Because of the additional cost, the receiver adapts more conservatively than

the sender. The parameter a measures the alignment of interests, with higher values

corresponding to more alignment.7 Since positive affine transformations of utility

functions describe the same preferences, we conveniently merge the receiver’s motives

into one loss function and write8

uR (y, θ, a) = − (y − a · θ)2 .

The state of the world Θ is a random variable with a common prior distribution

F with density f . The support is either the bounded interval S =
[
−S,S

]
, or

unbounded, S =
(
−S,S

)
= R. We assume that the density is logconcave, implying

a finite variance σ2, and symmetric, that is f(x) = f(−x), together implying a zero

mean. Symmetry is not essential for our analysis. In some applications a one-sided

version of the model is more suitable; changes are straightforward and left to the

reader.

The sender privately learns the realization of the state, θ. The receiver can choose

to communicate with the sender (communication). In this case, a sender strategy

7In terms of the literature, the sender’s bias is state dependent and equals (1− a) · θ.
8Note that uR(y, θ, γ) = − 1

a (y − a · θ)2−(1− a)·θ2, with γ = 1−a
a . The transformation obviously

affects levels of utility, but does not impact choices at any margin. The ideal choice functions of the
two specifications are the same, and, moreover, the specifications feature the same tradeoffs when
choosing among institutions of decision-making.

9



maps states into distributions over messages, MS : S → ∆M , and a receiver strategy

maps messages into actions YR : M → R. Strict concavity of payoffs implies that a

restriction to pure receiver strategies is without loss of generality. As a simple alter-

native, the receiver can choose to delegate decision-making to the sender (delegation),

in which case a sender strategy maps states into actions, YS : S → R.9 We solve for

Bayes Nash equilibria of the game.

3 Equilibria and Payoffs

3.1 Equilibria of the communication game

Equilibria in our cheap talk game have the typical partitional structure, as the payoffs

satisfy the single crossing condition. A partitional equilibrium is characterized by a

sequence of critical types, tn = (tni ), with t
n
i−1 < tni and n relating to the number of

induced actions. Sender types within an interval,
(
tni−1, t

n
i

)
, induce the same action;

critical types, tni , are indifferent between inducing the action in the interval below or

the action in the interval above. As we show in Proposition 1 below, for any finite

number of induced actions equilibria are symmetric in our model. For notational

simplicity we, therefore, take tni ≥ 0 and denote the critical types below zero by

−tni for all i and n. Receiving a message that indicates that θ ∈ [t, t), the receiver

updates her belief by forming the conditional expectation µ(t, t) = E
[
Θ|Θ ∈ [t, t)

]
.

For equilibrium critical types tn, we define

µn
i := E

[
Θ|Θ ∈

[
tni−1, t

n
i

)]
for i = 1, . . . , n and µn

n+1 := E [Θ|Θ ≥ tnn] . (1)

9We focus on simple unmediated one-round cheap talk. Alonso and Rantakari (2022) identify
conditions under which this achieves the maximum payoff among arbitrary mediation rules. We
focus on simple unconstrained delegation as this seems natural given our applications. We are,
for example, not aware of any restrictions that experts are committed to when trying to prevent a
threatening catastrophe. This rules out more complete contracts that allow, for example, for optimal
delegation (Holmström (1977), Alonso and Matouschek (2008)). As a theoretical benchmark, optimal
delegation would always outperform communication. The comparison to constrained optimal forms
of delegation, such as interval delegation, is an interesting open question that is left for future
research.
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Thus, the receiver’s equilibrium action given a message indicating θ ∈
[
tni−1, t

n
i

)
is

a · µn
i = argmaxyE[uR(y, θ, a)|θ ∈

[
tni−1, t

n
i

)
]. The indifference conditions of critical

types that determine partitional equilibria are given by

tni − a · µn
i = a · µn

i+1 − tni , for i = 1, . . . , n. (2)

Symmetric equilibria belong to one of two classes, depending on whether the total

number of induced actions is even or odd. In an Even equilibrium, type θ = 0 must

be a critical type and the equilibrium can be characterized setting tn0 = 0. In an Odd

equilibrium, a symmetric interval around zero is part of the equilibrium and we omit

tn0 from the construction. For an illustration with n = 1, see Figure 1. The step

function depicts the receiver’s actions.

Proposition 1 Assume a symmetric distribution with a logconcave density.

i) For all n, there exist an essentially unique Even equilibrium, that is symmetric

and induces 2 (n+ 1) actions, and an essentially unique Odd equilibrium, that is

symmetric and induces 2n+ 1 actions.

ii) Even and Odd equilibrium thresholds and actions converge pointwise for n →

∞. We call the limits limit equilibrium.10 In particular, we have limn→∞ tn1 = 0,

limn→∞ tni < limn→∞ tni+1, and limn→∞ tnn <∞.

Part i) of Proposition 1 proves the existence and uniqueness of partitional equi-

libria for arbitrary finite n. An analogous characterization of partitional equilibria

for the special case of the Laplace distribution is given in Deimen and Szalay (2019).

Proposition 1 generalizes the result to all symmetric distributions with a logconcave

density. Note that the support can be bounded or unbounded. Logconcavity of the

distribution and alignment a ∈ (0, 1) together imply that the solution of a certain

forward difference equation is monotonic in the initial value, which we use to prove

uniqueness.

Part ii) of the proposition proves that the limit as n→ ∞ also is an equilibrium.11

10We do not rule out the existence of other infinite equilibria.
11While the partitional form of equilibria is known from the seminal work of Crawford and Sobel
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Even:
y

θ
S−S

yS

t10−t11 t11

yR

aµ1
1

µ1
1

aµ1
2

µ1
2

Odd:
y

θ
S−S

yS

µ1
1−t11 t11

yRaµ1
2

µ1
2

Limit:

S−S

0

. . . . . .−t∞i t∞i

Figure 1: Partitional equilibria for a uniform distribution. Even and Odd equilibria
for n = 1 and a = 0.75. In a limit equilibrium, intervals around the prior mean 0 get
arbitrarily small as n→ ∞.

The partition of a limit equilibrium is illustrated in the bottom panel of Figure 1. A

limit equilibrium has a finite highest critical type, limn→∞ tnn <∞, even if the support

is unbounded. The reason is that for a distribution with a logconcave density, the

mean residual life, E[θ−tnn|θ > tnn], is decreasing towards zero as t
n
n → ∞. This insight

is new to the literature, which typically assumes a compact state space. Equilibrium

critical types and actions converge pointwise to limit equilibrium critical types and

actions. Intuitively, in a limit equilibrium, starting at the highest critical type, we

can calculate the second highest equilibrium action and threshold, proceeding step

by step towards zero, which is an accumulation point.

(1982), the structure of the limit equilibrium is closest in spirit to Alonso et al. (2008) and Rantakari
(2008). Gordon (2010) offers the first systematic account of the existence of infinite equilibria.
We add to this literature by highlighting the role of distributions and, in particular, the role of
logconcavity for existence and uniqueness. Logconcavity of the density and a receiver response
with a slope less than one – not necessarily constant – provides a micro-foundation for regularity
properties that are often imposed in the literature (e.g., condition M in Crawford and Sobel (1982)
or a regular receiver response in Gordon (2010)).
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3.2 Communication gains

We first focus on the gains from communication. Define the random variable µn of

conditional expectations on the discrete support (±µn
i )

n+1
i=1 , with µn

i (given in equa-

tion (1)) derived from the equilibrium partition (tni ). As is standard in cheap talk

games with quadratic losses, the expected equilibrium utility is a function of the (ex

ante) expected residual variance after communication, E[(σ2)n], where (σ2)n is the

random variable of conditional variances, conditional on the equilibrium partition.

The expected residual variance measures the expected uncertainty that is left after

communication has taken place. By the law of total variance, the expected residual

variance equals the prior variance minus the variance of the inferred posterior means

after communication,

E[(σ2)n] = σ2 − var (µn) . (3)

The variance of the inferred posterior means, var (µn), measures the expected infor-

mational gain from communication. Communication performs better if the expected

residual variance is smaller, or equivalently, if the variance of the inferred posterior

means is higher. For our comparative statics analysis, it turns out that the latter

object, var (µn), is analytically more convenient to work with.

3.3 Linear transformations

We now begin to investigate the impact of risk on communication equilibria and

payoffs. We first study changes in the distribution of the state that are induced by

linear transformations of the random variable, θ 7→ c · θ. Linear transformations that

stretch the state space make extreme realizations uniformly more likely, and thus

increase the variance. Symmetry of the density implies that we can write f (θ) =

κ 1
σ
ψ
(

θ2

σ2

)
, where κ is a normalizing constant and ψ is a function that captures the

shape of the distribution. So, keeping the shape of the distribution fixed, we can scale

the distribution by changing the standard deviation σ. As the next lemma shows,

equilibrium strategies are linear in the standard deviation, and utilities are linear in

the variance.
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Lemma 1 Fix the shape of the distribution ψ (·).

i) The receiver’s expected utility in any equilibrium of the communication game is a

linear function of the variance σ2:

E[ucomR (yR,Θ, a)] = −a2
(
σ2 − var(µn)

)
= −a2 (1− ℓ(a, n, ψ))σ2,

for some function ℓ(a, n, ψ) that is independent of σ2.

ii) The receiver’s expected utility under delegation is E[udelR (yS,Θ, a)] = − (1− a)2 σ2.

The first statement follows from a change of variables (a linear transformation) to

standardized random variables. We use the law of total variance to write the receiver’s

equilibrium expected utility as a function of σ2 − var(µn) in place of the expected

residual variance (as explained above). We show that the conditional means are linear

in the standard deviation, and thus the gain from communication var(µn) is linear

in the variance.

The second statement considers unconstrained delegation to the sender, as a sim-

ple alternative to communication. Under delegation, there is no loss of information, as

the informed sender takes the action yS = θ. Sender and receiver, however, disagree

on the optimal action by (1− a). Note that communication dominates delegation for

a ≤ 1
2
. The reason is that even a babbling equilibrium, which is the worst for everyone

among all equilibria of the communication game, results in a payoff of −a2σ2.

Expected utilities, whether arising from communication or from delegation, are

linearly decreasing in the variance. A higher variance thus results in lower expected

utilities under both institutions. However, by linearity, a higher variance never results

in a change of the optimal choice of institution in our model, all else equal.

Corollary 1 Fix the shape of the distribution ψ (·). The choice between delegation

and communication in any equilibrium of the communication game is independent of

the variance σ2.

This is a direct consequence of σ being a scale variable.12 By implication, if one

mode of decision-making is better than the other for some level of variance, then it

12Equivalent observations have been made in the literature in models in which the state follows a
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is better for every level of variance. In other words, when comparing the optimal

choice of institution for two distributions with different shape, it is without loss of

generality to scale the distributions such that they have the same variance. Recall

that, by Lemma 1, the delegation payoff is only a function of the variance but not of

the shape of the distribution.

Case a = 0.5:

E[uR]
σ2

−0.1

10

E[udelR (U)] = E[udelR (T )]

E[ucomR (U)]

E[ucomR (T )]

Case a = 0.75:

E[uR]
σ2

−0.1

10

E[udelR (U)]
= E[udelR (T )]

E[ucomR (U)]

E[ucomR (T )]

Figure 2: Payoffs are linear functions of the variance σ2; communication payoffs
(derived in Lemma 2) in a limit equilibrium for uniform U (black, solid) and triangular
T (blue, dashed) distributions, and delegation payoff (dashed-solid), for a = 0.5 (left
panel) and a = 0.75 (right panel).

Figure 2 illustrates Corollary 1. Both panels together show that the precise rank-

ing of the payoffs depends on the shape of the distribution as well as the alignment

of interest, but not on the level of the variance: for a = 0.5, communication is better

than delegation (left panel); for a = 0.75, delegation is better (worse) than commu-

nication under a triangular (uniform) distribution (right panel) for all σ2. To better

understand the payoff difference between the uniform and triangular distributions,

we now investigate the impact of the shape of the distribution on the communication

payoff. We will then come back to the comparison to the delegation payoff.

uniform distribution (Alonso et al. (2008), Rantakari (2008)). We extend the result to all scalable
distributions. The shape of the distribution does not matter, as long as it is fixed.

15



4 Increasing, convex transformations

We now study changes in symmetric distributions of the state that are induced by

increasing, convex transformations of the absolute value of the random variable, θ 7→

T (θ) for θ ≥ 0, and their impact on communication equilibria and payoffs. Increasing,

convex transformations make extreme realizations of the state disproportionally more

likely. They are hence a natural way to think of a disproportional increase in risk,

which we call tail risk. Note that the composition of an increasing, convex and a linear

transformation remains increasing and convex. Thus by Corollary 1, and without

loss of generality, we will focus on increasing, convex transformations T (θ) that keep

the variance constant. Geometrically, this means that T (θ) must cross the 45◦ line

exactly once from below. In words, the transformation decreases small realizations

and increases large ones. This implies then that the cdf of θ and cdf of T (θ) cross

once (on the positive support), such that, truncated to below the crossing point, the

original cdf stochastically dominates the transformed one, and vice versa above the

crossing point. The transformed cdf thus has more mass in the tail of the distribution;

it is more tail-risky. Intuitively, more mass in the tail implies that extreme events are

more likely. Combined with extreme conflicts in the tail, this implies an increased

potential for catastrophes.

4.1 Equilibrium quantiles

Consider two distinct random variables Θf and Θg with distributions F and G, and

symmetric densities f and g, respectively. Let Θf+ := |Θf | and Θg+ := |Θg| denote the

absolute values of these random variables (or equivalently, by symmetry, the random

variables with distributions truncated to the positive halves of their supports). The

respective densities of the cdfs F+ and G+ are f+(x) = 2f(x) and g+(x) = 2g(x) for

x ≥ 0. By symmetry, it is without loss of generality and analytically convenient to

study the one-sided distributions F+ and G+. The economic intuition, however, is

easier to convey by means of the two-sided distributions F and G. In what follows,

we therefore go back and forth between the two representations.
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f+ (θ)

g+ (θ)

θ

1

Sf =
√
3 Sg =

√
6

F+ (θ)

G+ (θ)

θ

1

Sf =
√
3 Sg =

√
6

Figure 3: Uniform distribution F+ (solid black) and Triangular distribution G+

(dashed blue) both with variance σ2 = 1.

We illustrate our assumptions and results graphically with two prominent distribu-

tions: the uniform distribution represents F and the triangular distribution represents

G. See Figure 3 for an illustration of f+(θ) =
1√
3
, F+(θ) =

θ√
3
, g+(θ) =

√
2√
3

(
1− θ√

6

)
,

and G+(θ) = 1 − (
√
6−θ)2

6
. The right panel shows that the cdfs cross once; for future

reference, note that the difference of the densities g+ − f+ in the left panel has two

sign changes, from positive to negative to positive. Moreover, as discussed above,

the assumptions of convexity and equal variances imply that Sf ⊂ Sg for these two

distributions, and indeed, for any two distributions with bounded supports. More

generally, we always have Sf ⊆ Sg.

To abbreviate notation, we will write G−1F for G−1◦F . Note that we can think of

Θg+ as generated from Θf+ by the increasing transformation T
(
θf+
)
= G−1

+ F+

(
θf+
)
.

The distributions are thus related by the condition G+

(
T
(
θf+
))

= F+

(
θf+
)
. We

assume that this transformation is increasing, convex and twice continuously differ-

entiable. For an illustration of this condition for the uniform F+ and triangular G+

distributions with G−1
+ F+(θ) =

√
6(1 −

√
1− θ√

3
), see the central panel in Figure 5.

Formally, we assume that the distributions are ordered in the convex transform order :

Definition 1 (CTO+) (van Zwet (1964)) Θf+ is smaller than Θg+ in the convex

transform order, that is, Θf+ ≤c Θg+ , if G
−1
+ F+ (θ) is convex in θ on the support of

F+.

The convex transform order is a skewness order: Θf+ ≤c Θg+ implies that distri-

bution G+ is more skewed towards high realizations than F+. As explained above
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heuristically, because of the common origin at θ = 0, convexity of G−1
+ F+ (·) , and

Sf ≤ Sg, there exists θ̂ such that G−1
+ F+(θ̂) = θ̂. Therefore, G+ (θ) > F+ (θ) for

θ ∈ (0, θ̂), and G+ (θ) < F+ (θ) for θ ∈ (θ̂,Sg). This implies that G+(θ)

G+(θ̂)
> F+(θ)

F+(θ̂)
for

θ ∈ (0, θ̂), and G+(θ)−G+(θ̂)

1−G+(θ̂)
< F+(θ)−F+(θ̂)

1−F+(θ̂)
for θ ∈ (θ̂,Sg). The truncated distributions

are thus ordered by first order stochastic dominance: F+(θ)

F+(θ̂)
dominates G+(θ)

G+(θ̂)
below θ̂,

and G+(θ)−G+(θ̂)

1−G+(θ̂)
dominates F+(θ)−F+(θ̂)

1−F+(θ̂)
above θ̂.13

Notice that the convex transform order is transitive: For three distributions with

cdfs H+, G+, and F+, if G
−1
+ F+ is increasing and convex and H−1

+ G+ is increasing and

convex, then H−1
+ F+ = H−1

+ G+G
−1
+ F+ as the composition of two increasing, convex

functions is increasing and convex as well. Moreover, consistent with convex transfor-

mations remaining convex under linear transformations, the convex transform order

is independent of location and scale (van Zwet (1964)). Formally, two distributions

are equivalent in the convex transform order if and only if one random variable is an

increasing affine transformation of the other.

Consider now the two-sided distributions F and G. The transformation of the

random variable T (θ) in the two-sided case is concave-convex: concave for θ ≤ 0

and convex for θ ≥ 0. By symmetry, G has more mass in the tails than F. For

this symmetric two-sided case, van Zwet provides an equivalent stochastic (kurtosis)

order. Formally, the one-sided distributions satisfy Θf+ ≤c Θg+ if and only if Θf is

smaller than Θg in van Zwet’s s-order, Θf ≤s Θg (van Zwet (1964)). As the s-order

implies a higher kurtosis it provides a natural measure of risk.

The s-order and thus the convex transform order have the following implication

for equilibria of the communication games.

Proposition 2 Suppose Θf+ ≤c Θg+. Then the quantiles at the equilibrium thresh-

olds for the respective distributions, tni,f , t
n
i,g, satisfy F+

(
tni,f
)
≤ G+

(
tni,g
)
for all n.

The proposition shows an ordering of the quantiles at the equilibrium thresholds.

For an illustration of the Even equilibrium for n = 1, see Figure 4: if Θf+ ≤c Θg+,

13Equivalent representations of the convex transform order are given in van Zwet (1964) Lemma

4.1.3, for example, that F−1′′ (q)

F−1′ (q)
≤ G−1′′ (q)

G−1′ (q)
for 0 < q < 1, or that the density quantile ratio

G−1′ (q)

F−1′ (q)
=

f+(F−1
+ (q))

g+(G−1
+ (q))

is non-decreasing for 0 < q < 1.
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1

θ
SgSf

F+(θ)
G+(θ)

F+(t
1
1,f )

G+(t
1
1,g)

t11,gt11,fµ1
1,gµ

1
1,f µ1

2,gµ1
2,f

Figure 4: The discrete distribution of receiver actions in an Even equilibrium for n = 1
and a = 1, illustrating Proposition 2 for uniform distribution F+ (black dotted) and
triangular distribution G+ (blue dashed).

then all critical types for G+ are weakly higher than all critical types for F+ in the

quantile space. Note that the ordering only refers to the quantiles at the critical

types, but not necessarily to the actions.

√
3

q
1

F−1
+ (q)

µ1
1,f

µ1
2,f

t11,f

q11,f

√
6

θ√
3

T (θ) = G−1
+ F+(θ)

t11,fµ1
1,f µ1

2,f

T (µ1
1,f )

T (t11,f )

T (µ1
2,f )

√
6

q
1

G−1
+ (q)

t11,g

µ1
1,g

µ1
2,g

q11,g

Figure 5: Even equilibrium for uniform distribution (left panel) and triangular dis-
tribution (right panel) in the quantile space both for n = 1 and a = 1. Convex

transformation T (θ) = G−1
+ F+(θ) =

√
6(1−

√
1− θ√

3
) (central panel).

The proof of the proposition uses the convexity of the transformation and Jensen’s
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inequality. We illustrate the most important step of the proof in Figure 5. The left

panel illustrates the Even equilibrium with n = 1 and alignment a = 1 for the uniform

distribution F+. The equilibrium actions µ1
1,f and µ1

2,f are a mean-preserving spread

of the equilibrium threshold t11,f , t
1
1,f = 1

2
µ1
1,f + 1

2
µ1
2,f . The central panel illustrates

the convex transformation T = G−1
+ F+ applied to the equilibrium values under F+.

Due to the convexity of T and Jensen’s inequality, the corresponding values on the

vertical axis do not form a mean-preserving spread, T (t11,f ) <
1
2
T (µ1

1,f ) +
1
2
T (µ1

2,f )

(see the red dashed lines). As a consequence, to restore the equilibrium, the values

need to be adjusted upwards: the right panel shows the equilibrium and the resulting

mean-preserving spread for the triangular distribution G+, t
1
1,g =

1
2
µ1
1,g +

1
2
µ1
2,g. The

argument solely relies on convexity. We show in the appendix that the proof extends

to a < 1 and to an arbitrary number of critical types.

While the proposition allows us to order the quantiles of the equilibrium thresh-

olds, it does not necessarily imply an ordering of the equilibrium payoffs. A sufficient

(but not necessary) condition for the ordering of the payoffs is an ordering of all

equilibrium actions, µn
i,g < µn

i,f for all i ≤ n. If all actions are ordered, then the distri-

bution of the actions for F+ first order stochastically dominates the distribution of the

actions for G+. This implies that the distribution of the equilibrium actions for F is

a mean-preserving spread of the distribution of the equilibrium actions for G.14 The

mean-preserving spread then implies an ordering of the variances, var(µn
f ) > var(µn

g ),

and hence of the payoffs.

Without further assumptions, however, not all the equilibrium actions are always

ordered, as our example in Figure 4 with µ1
2,g > µ1

2,f for a = 1 shows. In the next

subsection, we will address the ranking of the equilibrium actions (1) by imposing

more structure on the distributions that we compare, in particular on their likelihood

ratio, and (2) by requiring a sufficiently low level of agreement.

14For a definition of mean-preserving spreads see, for example, Mas-Colell et al. (1995) Proposition
6.D.2; for an earlier reference see Hardy et al. (1929)).
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4.2 Equilibrium gains

We now focus on the densities of the distributions. The convex transform order

implies that g+ − f+ is positive for small and for large values of θ, so that g+ − f+

must have at least two sign changes. Whitt (1985) introduces a concept of ‘increased

riskiness’ that requires that g+ − c · f+ has at most two sign changes for arbitrary

c > 0 (and if there are two, they are from positive to negative to positive). The factor

c takes care of the relative measure on arbitrary subsets, thus preserving the order

under arbitrary truncations. Given the partitional equilibrium structure, the order

seems to be tailored to the problem at hand. Whitt shows that this requirement is

equivalent to Θf+ being uniformly less variable than random variable Θg+ :

Definition 2 (UCV+) (Whitt (1985)) Θf+ is smaller than Θg+ in the uniform con-

ditional variability order, Θf+ ≤uv Θg+ , if the support of Θf+ is a subset of the support

of Θg+ , Sf+ ⊆ Sg+, and the ratio f+(θ)
g+(θ)

is unimodal over Sg+, where the mode is a

supremum, but Θf+ is not first order stochastically higher than Θg+.

θ

1

√
3

√
6

m

f+(θ)
g+(θ)

θ

1

√
6

√
10

m

g+(θ)
h+(θ)

Figure 6: Uniform conditional variability. Left panel: distributions f+ (uniform) and

g+ (triangular) with f+(θ)
g+(θ)

= 1√
2− θ√

3

satisfy Θf+ ≤uv Θg+ . Right panel: distributions g+

(triangular) and h+(θ) =
√
9√
10

(
1− θ√

10

)2
for θ ∈

[
0,
√
10
]
with g+(θ)

h+(θ)
=

√
20√
27

(
1− θ√

6

)
(
1− θ√

10

)2

satisfy Θg+ ≤uv Θh+ (see Lemma A.7).

For an illustration of different likelihood ratios on the positive half of the support,
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see Figure 4.2. The ratios are unimodal with interior mode m. As we show in the

proof of Proposition 3 below, Θf+ ≤uv Θg+ implies (again) that there exists some θ̃

such that 1 − G+ (θ) < 1 − F+ (θ) for θ ∈ (0, θ̃) and 1 − G+ (θ) > 1 − F+ (θ) for

θ ∈ (θ̃,Sg). Thus, Θf+ ≤uv Θg+ like Θf+ ≤c Θg+ implies that the distribution of Θg

has more mass in the tails than the distribution of Θf .

The uniform conditional variability order in combination with the convex trans-

form order implies that the difference of the densities has exactly two sign changes:

g+ − f+ is positive for small and for large values of θ and negative for intermediate

values of θ. We use the unimodal likelihood ratio to order the equilibrium actions

and thereby the equilibrium payoffs:

Proposition 3 Suppose that F and G have the same variance σ2 and that Θf+ ≤uv

Θg+ and Θf+ ≤c Θg+. Then, there exists a′ ∈ (0, 1), defined in the proof, such that

for a ≤ a′, the distribution of µn
f is a mean-preserving spread of the distribution of

µn
g , implying that

varf (µ
n
f ) > varg(µ

n
g ).

The proposition implies by equation (3) that the payoffs for distribution f are

higher than those for g. Note that this insight extends to distributions f and g

with σ2
g > σ2

f that satisfy the remaining conditions of the proposition, since −σ2
f +

varf (µ
n
f ) > −σ2

g + varg(µ
n
g ). Hence our comparison extends to cases in which one

distribution is more risky than the other in the sense of a higher variance and a

higher kurtosis.

Condition Θf+ ≤c Θg+ implies that for any alignment a ∈ (0, 1) the equilibrium

probability distribution of the receiver’s actions for F puts more weight on the more

extreme actions than that for G. For a relatively small, all thresholds and actions

are relatively close to the prior mean. Due to Θf+ ≤uv Θg+ this implies that the

equilibrium actions for f are all farther away from zero than those for g. Taken

together, the ranking of quantiles and actions imply that the distribution of µn
f is a

mean-preserving spread of the distribution of µn
g .

Table 1 illustrates our findings. First, the table shows that for sufficiently little

alignment a, the receiver’s equilibrium actions are closer to the prior mean forG+ than
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Uniform Triangular
a 0.25 0.5 0.75 1
t11,f 0.124 0.289 0.520 0.866
µ1
1,f 0.062 0.144 0.260 0.433
µ1
2,f 0.923 1.010 1.126 1.299

F+(t
1
1,f ) 0.071 0.167 0.3 0.5

var(µ1
f ) 0.800 0.854 0.908 0.938

a 0.25 0.5 0.75 1
t11,g 0.119 0.287 0.537 0.936
µ1
1,g 0.059 0.141 0.257 0.431
µ1
2,g 0.896 1.008 1.174 1.440

G+(t
1
1,g) 0.095 0.221 0.390 0.618

var(µ1
g) 0.727 0.796 0.867 0.907

Table 1: Even equilibrium values for uniform and triangular distributions for n = 1.

for F+. Together with Proposition 2 this implies that the distribution of actions for

F is a mean-preserving spread of the distribution of actions for G. Second, the table

shows that the ordering of the equilibrium actions is sufficient, but not necessary, for

a higher gain from communication: the variance of receiver actions var(µ) is higher

for F than for G for all levels of alignment a in the table.15

5 Delegation versus communication

In this section, we quantify the effects derived in the previous analysis. We provide

some interpretation for the term ‘sufficiently misaligned’ interests used in Proposi-

tion 3. Moreover, we link our findings back to the comparison of delegation versus

communication. We show that for a given alignment of preferences, a more risky

distribution can change the optimal way of decision-making from communication to

delegation. All distributions we compare in this section are ranked according to the

convex transform order and the uniform conditional variability order.

To quantify the effects and to derive a formula for the gain from communication,

we rely on a ‘dynamic programming’ procedure as our technical tool. The slope of the

tail-truncated expectation function ϕ(t) := E [Θ|Θ ≥ t] for t ≥ 0, is a crucial determi-

nant of this value.16 The case of a linear tail-truncated expectation – the two-sided

15Uniform conditional variability and logconcavity prove useful also outside of communication
games; see, for example, Lyu et al. (2023) for an application to information design.

16The computation is based on a procedure which is akin to dynamic programming (for a = 1, i.e.,
identical sender and receiver preferences, it would be dynamic programming in the literal sense). In
particular, we compute the expected squared deviation from ϕ(0) conditional on the last interval,
then conditional on the last two intervals, and so on, proceeding towards zero. In each step, we
can simplify the expression using the arbitrage condition of the threshold types, the law of iterated
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generalized Pareto distribution – is particularly structured. We treat this in the next

subsection. A second class of interest is the class of convex tail-truncated expectation

functions. The Gaussian distribution is a prominent case with this property, which

we treat thereafter.

The gain from communication in a limit equilibrium can be quantified as follows.

Proposition 4 Suppose that ϕ(t) := E [Θ|Θ ≥ t] is convex in t ≥ 0. Then the vari-

ance of µn in a limit equilibrium satisfies

var(µ∞) ≥ 2

2− a · ϕ′(0)
· ϕ(0)2.

If ϕ(t) is linear in t ≥ 0, then the condition is satisfied with equality.

The (lower bound on the) variance of µ∞ is a product of two terms. The fac-

tor ϕ(0)2 = E [Θ|Θ ≥ 0]2 measures the amount of information that is transmitted

by binary communication, when dividing the state space into positive and negative

realizations. The factor 2
2−a·ϕ′(0)

captures (a lower bound on) the additional informa-

tion contained by dividing each half into a countable infinity of subintervals. The

latter term depends on the slope of the tail-truncated expectation, ϕ′(t). The slope

is constant for a linear tail-truncated expectation function which therefore yields a

closed form solution. The slope is increasing for convex tail-truncated expectations.

We thus obtain a lower bound on the variance of equilibrium actions by using the

minimal slope of the conditional expectation, which amounts to the slope at zero,

ϕ′(0).

expectations – which links expectations over subintervals to expectations truncated to the tail of the
distribution –, and the special form of tail-truncated expectations. If the tail-truncated expectation
function is linear in the truncation point, we can carry an exact functional form backwards towards
zero, obtaining a closed form expression in the limit. The procedure was developed in (Deimen and
Szalay (2019)). Here, we generalize the procedure to the case of convex tail-truncated expectations.
Note that our quantitative assessment of communication gains via ‘dynamic programming’ applies
to any distribution that becomes relatively more variable towards the tail of its distribution in the
sense of a globally increasing residual coefficient of variation (Gupta and Kirmani (2000)). Gupta
and Kirmani (2000) show that the residual coefficient of variation, i.e., the ratio of residual variance
and mean residual life squared, increases in the truncation point if ϕ(t) is convex in t.
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5.1 The linear case: generalized Pareto distribution

Consider symmetric distributions. The tail-truncated expectation ϕ(t) = E [Θ|Θ ≥ t]

is linear in 0 ≤ t < S if and only if the state is distributed according to a two-sided

generalized Pareto distribution.17 For this class, the density is

f (θ; δ, s) =
1

2s

(
1 + δ

|θ|
s

)− 1
δ
−1

for θ ∈
[s
δ
,−s

δ

]
, (GP)

where s ∈ (0,∞) is a scale parameter and δ ∈ [−1, 0) is a shape parameter.18 The

variance of the distribution is σ2 (s, δ) = 2s2

(1−δ)(1−2δ)
.

Increases in scale s, for a given shape δ, make the support, [ s
δ
,− s

δ
], wider, and

move equilibrium actions further away from the mean. Increases in shape δ, for a

given support, move equilibrium actions closer to the mean. Any two distributions

f, g in this generalized Pareto class with parameters s, δ and s′, δ′ respectively, such

that 0 > δ′ > δ ≥ −1, s′ < s, and − s
δ
< − s′

δ′
, satisfy the convex transform order

Θf+ ≤c Θg+ and the uniform conditional variability order Θf+ ≤uv Θg+ (see Lemma

A.7 in the appendix).

The class nests many well-known distributions: the case δ = −1 is the uniform

distribution, δ = −1
2
is the triangular distribution, and the limit case δ = 0 is

well defined and corresponds to the Laplace distribution. By Proposition 4, for the

generalized Pareto environment, the expected utilities arising from communication in

a limit equilibrium can be stated in closed form.

Lemma 2 For the two-sided generalized Pareto distribution with shape δ ∈ [−1, 0)

and scale s2 = σ2 (1−δ)(1−2δ)
2

, we have that ϕ′(0) = 1
1−δ

. Hence, in a limit equilibrium,

17In Deimen and Szalay (2019), we derive distributions with a linear tail-truncated expectation
from first principles as the unique solution to a differential equation. In that formulation, the solution
involves the variance and the slope of the tail-truncated expectation. Here, we observe that we can
re-parametrize these distributions to the general Pareto class with scale s and shape δ.

18The distribution is constructed from the well-known one-sided generalized Pareto by reflecting
the density at the vertical axis. The location parameter is set to zero, so that the mean is zero. The
distribution is defined more generally for shape parameters δ ∈ (−∞,∞) , but we restrict attention
to the subset that features logconcave tails. We treat the case δ ≥ 0 in Deimen and Szalay (2019);
these distributions have logconvex tails and an infinite support. The generalized Pareto distribution
was introduced by Pickands (1975) in the context of extreme value theory. See also Arnold (2008).
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we have

var(µ∞) =
2

2− a
1−δ

ϕ(0)2 =
2− 1

1−δ

2− a
1−δ

σ2. (4)

The second equality in (4) obtains from noting that ϕ(0) = s
1−δ

, and using the

functional form of the variance. Naturally, var(µn) ≤ var (µ∞) ≤ var (Θ). For a→ 0,

the value var(µ∞) approaches the value of binary communication. Note that for any

given alignment a ∈ (0, 1), the value var(µ∞) is decreasing in δ.19 A larger shape

parameter reduces the value of communication, as less information is transmitted in

equilibrium. Thus, within the generalized Pareto class, the shape parameter has a

strictly negative impact on the gain from communication for any value of a < 1.20

In the sense of Proposition 3, for this class, the condition of ‘sufficiently misaligned’

interests is always satisfied, i.e., a′ = 1, and there is no restriction on the alignment

parameter.

It is now straightforward to investigate the effect of the shape of the distribution

on the optimal choice of institution: communication or delegation.

Proposition 5 Consider the two-sided generalized Pareto distribution with δ ∈ [−1, 0).

Suppose the receiver can choose between communication and delegation. Then, dele-

gation is better than communication in any equilibrium of the communication game if

δ ≥ 2−3a
2−2a

. Communication in a limit equilibrium is better than delegation if δ ≤ 2−3a
2−2a

.

While the performance of delegation depends only on the variance of the envi-

ronment, the performance of communication depends in addition on the shape of the

distribution. The fraction of information that is transmitted in a limit equilibrium,
2− 1

1−δ

2− a
1−δ

, is smaller in environments that feature a larger δ. We depict the comparison

in Figure 7.

19For a = 1, the value of partitional communication reaches the upper bound of fully revealing
communication. For a = 0, the receiver’s action equals zero for any sender strategy.

20Alonso and Rantakari (2022) derive an upper bound on the maximal communication payoff
for a set of distributions. In particular, they consider a uniform, a half-triangular, and a truncated
exponential distribution. They show that for a constant variance a shift from truncated exponential,
to half-triangular, to uniform improves the payoffs under communication. This is in line with our
findings. Because they consider a fixed interval support, this shift implies an increase in the expected
conflict. Thus in their paper, a shift that reduces the expected conflict can worsen communication.
In our paper, better aligned interests imply better communication payoffs.
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a

δ−1 0

1

1
2

Communication

Delegation

Figure 7: Delegation versus communication. On the horizontal axis, the shape param-
eter δ increases from −1 (uniform distribution) to the limit of 0 (Laplace distribution;
see Deimen and Szalay (2019)); on the vertical axis, the level of alignment a increases
from 1

2
to 1.

Consistent with the literature, delegation dominates communication when inter-

ests are relatively well aligned and the receiver is quite responsive to the sender’s

advice, i.e., a ≥ 2−2δ
3−2δ

.21 The comparison in terms of the shape of the distribution adds

a new dimension to the literature. For a ∈
(
2
3
, 4
5

)
and a distribution with a low shape

parameter, communication is optimal. If the shape parameter is higher, however,

delegation is optimal. In other words, an increase of the mass in the tail of the dis-

tribution – an increase in tail risk – induces a change in the mode of decision-making

from communication to delegation in the named range. Note that the conditions

in Proposition 5 are independent of the scale parameter s. This is an illustration

of Corollary 1: Proposition 5 compares communication and delegation payoffs for

distributions with arbitrary variances.22

5.2 A convex case: Gaussian versus Laplace

We here consider two distributions with infinite support. The Laplace distribution

features linear tail-truncated expectations; it is the limit case with δ = 0 in the

two-sided generalized Pareto class studied in the previous subsection. A leading

21See, for example, Alonso et al. (2008) and Rantakari (2008) who study a uniform distribution,
i.e., δ = −1. See also Dessein (2002).

22Chen and Gordon (2015) (Section 5.2) compare delegation and communication for a Beta distri-
bution and an additive bias. They state conditions on the bias and the variance such that informative
communication is feasible and dominates delegation.
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example within the class of distributions with convex tail-truncated expectations is

the Gaussian distribution (see Sampford (1953)).

Lemma 3 For the Gaussian distribution, ϕ′(0) = 2
π
. The gain from communication

in a limit equilibrium is bounded from below,

var(µ∞) ≥ 2

2− a 2
π

ϕ(0)2 =
2

π − a
σ2. (5)

By Proposition 4, for the Gaussian distribution the expected utilities arising from

communication can be bounded from below. The lower bound on the variance of equi-

librium actions uses the minimal slope of the truncated expectation, which amounts

to the slope at the origin, ϕ′(0) = 2
π
. The equality in (5) results from the fact that

for the Gaussian distribution ϕ(0)2 = 2
π
σ2.

With this at hand, we can compare delegation to communication under the Gaus-

sian distribution and under the Laplace distribution. First recall that by Corollary

1, the comparison of delegation and communication is independent of the variance.

The following statement thus holds for all levels of variance. Further, note that the

distributions of the absolute values of the Gaussian and the Laplace are ordered as

follows: the Gaussian is smaller than the Laplace in the convex transform order;

and the Gaussian is uniformly less variable than the Laplace (see Lemma A.8 in the

appendix).

Interests are sufficiently misaligned in the sense of Proposition 3, if a ≤ 0.858. In

this case, the lower bound of the value of communication in a limit equilibrium for

the Gaussian distribution outperforms the exact value of communication in a limit

equilibrium for the Laplace distribution. Using these values, we identify situations in

which communication in a limit equilibrium is optimal for the Gaussian distribution,

while delegation is optimal for the more tail-risky Laplace distribution.

Proposition 6 If communication in a limit equilibrium is preferred over delegation

for the Laplace distribution, then communication in a limit equilibrium is also pre-

ferred over delegation for the Gaussian distribution. Conversely, there is a nonempty

28



set of preference alignment parameters a for which delegation is preferred for the

Laplace distribution, whereas communication in a limit equilibrium is preferred for

the Gaussian distribution.

E[uR]
σ2

−0.1

10

E[udelR (G)] = E[udelR (L)]

E[ucomR (G)]

E[ucomR (L)]

Figure 8: Communication payoffs in a limit equilibrium for the Laplace distribution
L (blue, dashed) and the lower bound for the Gaussian distribution G (black, solid)
and the delegation payoff (dashed-solid), for a = 0.68. The communication payoff
in a limit equilibrium for the Gaussian distribution is some ray in the shaded area,
indicated in gray.

To rephrase the proposition, in the particular case at hand, there is (as before),

more delegation compared to communication when the environment features more

mass in the tails in the sense of Θf+ ≤c Θg+ and Θf+ ≤uv Θg+ . The set of alignment

parameters is specified in the proof. By Corollary 1, the comparison is independent

of the level of the variance. For an illustration, see Figure 8.

The Gaussian distribution is one example. Similar results can be obtained for

any distribution with a logconcave density and a convex tail-truncated expectation

function.

6 Thin versus heavy tails

We have so far confined our attention to distributions with a logconcave density –

i.e., relatively thin tails. We now expand our analysis to distributions with logconvex,

i.e., heavier, tails.
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Proposition 7 Consider two symmetric distributions F,G with support on R and

with the same finite variance σ2. Suppose that the density f+ is logconcave and the

density g+ is logconvex. Then, Θf+ ≤uv Θg+ and Θf+ ≤c Θg+. Moreover, in any

informative symmetric equilibrium, there exists a′ ∈ (0, 1), such that for a ≤ a′, the

distribution of µn
f is a mean preserving spread of the distribution of µn

g , implying that

varf (µ
n
f ) > varg(µ

n
g ).

The payoffs of the communication games for distributions with logconcave tails

are thus higher than for those with logconvex tails. Note that there always exists an

informative symmetric equilibrium, since binary communication is always feasible.

To prove the proposition, we only need to apply Proposition 3. Hence, we aim

at showing that the conditions stated in the proposition imply that the distributions

are ranked according to Θf+ ≤uv Θg+ and Θf+ ≤c Θg+. We first consider the uni-

form conditional variability order and relate it to the well-known concept of relative

logconcavity.

Definition 3 (Whitt (1985)) If f+
g+

is logconcave, then f+ is said to be logconcave

relative to g+.

We obtain the following.

Lemma 4 Consider two symmetric distributions with the same variance and with

densities f, g on R such that f+
g+

is logconcave, then Θf+ ≤uv Θg+.
23

In particular, note that f+
g+

is logconcave if f+ is logconcave and g+ is logconvex.

As a consequence, two distributions satisfying the assumptions in Proposition 7 are

ranked according to the uniform conditional variability order, Θf+ ≤uv Θg+ . We note

that, in contrast to the uniform conditional variability order, relative logconcavity is

a transitive concept.

We next consider the convex transform order, Θf+ ≤c Θg+.

23From Shaked and Shanthikumar (2007) Theorem 3.A.54, it is known that, for equal supports,
relative logconcavity and exactly two sign changes of the difference of the densities imply the uni-
form variability order. In contrast, we show that the uniform variability order arises from relative
logconcavity plus the distributions having the same variance.
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Lemma 5 Consider two symmetric densities f, g on R. If f+ is logconcave and g+

is logconvex, then Θf+ ≤c Θg+.

Hence the conditions of Proposition 3 are satisfied, and we obtain a mean-and-

variance-preserving spread in terms of the underlying state distributions. By the

now familiar arguments, this induces a mean-preserving spread in the distributions

of receiver actions.

In closing, we note that we have picked the most focal point of comparison: the

loglinear (Laplace) distribution which separates logconcave from logconvex distribu-

tions. We can pick any other distribution as a point of reference, for example the

Gaussian distribution. Distributions that are logconcave relative to the Gaussian dis-

tribution are called strongly logconcave (Wellner (2013)). In a similar vein, we can

consider distributions that are smaller or larger than the Gaussian distribution in the

convex transform order. Our insights carry over to these comparisons.

All of our results show that communication tends to perform poorly in environ-

ments with heavier tails compared to environments with thinner tails.

7 Illustrative example and conclusion

7.1 Illustrative Example

In the following well-documented example, decision-making based on communication,

in an environment with an increased risk of extreme events, resulted in a catastro-

phe.24 We do not claim that our model is an adequate description of the case; we

think, however, that it illustrates some of the fundamental forces at work.

Between 1990 and 2009, the oil production industry in the Gulf of Mexico made

drastic moves in their drilling locations, from shallow to deepwater wells. This change

in production – measured by an increase in oil from deepwater wells from 4% to 80% of

the total volume (p.73) – was met by varied conditions for drilling at great depths. We

24The information provided here is based on the report of the National Comission on the BP
Deepwater Horizon oil spill and offshore drilling (2011).
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think that an increase in tail risk resulting from an increasing, convex transformation

of the distribution captures these changes in the drilling conditions quite well.

The rig Deepwater Horizon was drilling the Macondo well in the Gulf of Mexico,

when in 2010 a blowout with catastrophic consequences occurred. BP, the owner of

the drilling rights (the receiver), relied on a subcontractor, Transocean (the sender),

to perform the drilling. BP and Transocean had agreed on a budget and a timeline

(p.2). We model this as the ‘status quo’ procedure that is optimal if the expected

conditions are realized. Every adaptation away from the planned procedure was costly

to BP, with costs increasing in the length of the resulting delay. Hence BP responded

conservatively to proposed changes by Transocean (p.125). For example, BP decided

to continue drilling with unaltered procedures, despite the fact that experts suggested

significant changes (BP relied on 6 instead of 16 centralizers (p.97), changed the

cementing process (p.100), etc.). Our modeling of increasing disagreement – a linear

state dependent bias – that results in a receiver response with slope less than one,

captures this feature. The state in our model may be seen as the specific drilling

conditions, for example the pressure conditions below the seabed. Pressure can be

unexpectedly high or low. One stylized way to capture these ideas is to assume a

symmetric distribution of the state.

The report (p.122) states that “Most, if not all, of the failures at Macondo can be

traced back to underlying failures of management and communication.” Our model

indicates that for such a change in the drilling environment, in which extreme real-

izations become more likely, delegation to the expert outperforms relying on commu-

nication.

7.2 Conclusion

In this paper, we study the impact of risk on the performance of communication,

through transformations of the state variable. In particular, we are interested in

the likelihood of extreme events, which in our model is tied to the likelihood of

extreme disagreement. We compare the payoffs under communication with those

under unconstrained delegation.
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We find that linear transformations (changes in the variance for a given shape

of the distribution) scale the payoffs under communication as well as under delega-

tion. Increasing, convex transformations (changes in the shape of the distribution

that increase the kurtosis for a given variance) only impact the payoffs under com-

munication. We combine the convex transform order with the uniform conditional

variability order to rank the payoff gains from communication, assuming adaptation

costs of some size for the receiver. Increasing the risk through a combination of lin-

ear and of increasing, convex transformations more often renders delegation optimal

relative to communication.

Finally, we confirm our finding that an increase in tail risk is detrimental for

communication when comparing distributions with thin tails to distributions with

heavier tails. When extreme events become more likely, communication payoffs suffer.
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A Appendix

Definition A.1 The forward equation is recursively defined as solutions ti+1(ti−1, ti)

to the indifference conditions of types ti. We denote an arbitrary initial value of t1

by τ . In particular, for i = 1 we have t2(0, τ) as solution to

2τ − aE [Θ|Θ ∈ [0, τ ]]− aE [Θ|Θ ∈ [τ , t2(0, τ)]] = 0, (6)

for i > 1 we have ti+1(ti−1, ti) as solutions to

2ti − aE [Θ|Θ ∈ [ti−1, ti]]− aE [Θ|Θ ∈ [ti, ti+1(ti−1, ti)]] = 0. (7)

Lemma A.1 (Szalay (2012)) (Strict) Logconcavity of the distribution implies that

∂

∂ti−1

E [Θ|Θ ∈ [ti−1, ti]] +
∂

∂ti
E [Θ|Θ ∈ [ti−1, ti]] ≤ (<)1.

Lemma A.2 Consider the forward equation. Logconcavity of the distribution and

a < 1 implies that for all i = 1, . . . , n− 1

dti+1

dti
=

(
2− a ∂

∂ti
E [Θ|Θ ∈ [ti−1, ti]]− a ∂

∂ti
E [Θ|Θ ∈ [ti, ti+1]]

)
a ∂
∂ti+1

E [Θ|Θ ∈ [ti, ti+1]]
> 1.

Proof of Lemma A.2. Consider the forward equation for t2. The value t2 (0, τ) is

the unique solution to (6). Totally differentiating (6) we find

dt2
dτ

=

(
2− a ∂

∂τ
E [Θ|Θ ∈ [0, τ ]]− a ∂

∂τ
E [Θ|Θ ∈ [τ , t2]]

)
a ∂
∂t2

E [Θ|Θ ∈ [τ , t2]]
> 1,

where the inequality follows from Lemma A.1:

2− a
∂

∂τ
E [Θ|Θ ∈ [0, τ ]] > 1 > a

∂

∂τ
E [Θ|Θ ∈ [τ , t2]] + a

∂

∂t2
E [Θ|Θ ∈ [τ , t2]] .

Next, consider arbitrary i = 1, . . . , n − 1. The sender’s solution to the forward
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equation for ti is given by (7). Totally differentiating (7) yields(
2− a

∂

∂ti
E [Θ|Θ ∈ [ti−1, ti]]− a

∂

∂ti
E [Θ|Θ ∈ [ti, ti+1]]− a

∂

∂ti−1

E [Θ|Θ ∈ [ti−1, ti]]
dti−1

dti

)
dti

= a
∂

∂ti+1

E [Θ|Θ ∈ [ti, ti+1]] dti+1.

Suppose as an inductive hypothesis that dti
dti−1

> 1, so dti−1

dti
< 1. Rearranging, we get

dti+1

dti
=

(
2− a ∂

∂ti
E [Θ|Θ ∈ [ti−1, ti]]− a ∂

∂ti
E [Θ|Θ ∈ [ti, ti+1]]− a ∂

∂ti−1
E [Θ|Θ ∈ [ti−1, ti]]

dti−1

dti

)
a ∂
∂ti+1

E [Θ|Θ ∈ [ti, ti+1]]

> 1,

which obtains by the inductive hypothesis and Lemma A.1:

2− a
∂

∂ti
E [Θ|Θ ∈ [ti−1, ti]]− a

∂

∂ti−1

E [Θ|Θ ∈ [ti−1, ti]]
dti−1

dti

> 2− a
∂

∂ti
E [Θ|Θ ∈ [ti−1, ti]]− a

∂

∂ti−1

E [Θ|Θ ∈ [ti−1, ti]]

> 1 > a
∂

∂ti
E [Θ|Θ ∈ [ti, ti+1]] + a

∂

∂ti+1

E [Θ|Θ ∈ [ti, ti+1]] .

2

Lemma A.3 The last equilibrium threshold tnn is bounded from above for all n and

limn→∞ tnn <∞.

Proof of Lemma A.3. The statement is trivial for S <∞.

Consider the closure condition and define

∆n (τ) ≡ 2tn (τ)− aE [θ| θ ∈ [tn−1 (τ) , tn (τ)]]− aE [θ| θ ≥ tn (τ)] .

Now, ∆n (τ) = 0, for τ = tn1 . We have

∆n (t
n
1 ) = 2tnn − aE

[
θ| θ ∈

[
tnn−1, t

n
n

]]
− aE [θ| θ ≥ tnn] ≥ 2 (tnn − aE [θ| θ ≥ tnn]) ,

which follows from −aE
[
θ| θ ∈

[
tnn−1, t

n
n

]]
≥ −aE [θ| θ ≥ tnn]. For a logconcave dis-

35



tribution, t − aE [θ| θ ≥ t] is negative for t = 0, increasing in t, and goes to ∞ for

t→ ∞. Therefore, limn→∞ tnn <∞ and the sequence tnn is bounded above. 2

Proof of Proposition 1. The proof is analogous to the proof of Proposition

1 in Deimen and Szalay (2019) which only considers the Laplace distribution, and

therefore omitted. Instead of using the functional form of the Laplace distribution one

can apply properties of logconcave densities to show the statements. These properties

are summarized in Lemma A.1 and Lemma A.2. Moreover, Lemma A.3 shows the

existence of a bound. For a detailed version of the proof, we refer the interested

reader to the working paper version Deimen and Szalay (2023). 2

Proof of Lemma 1.

i) Note that any symmetric one-dimensional density is elliptical (Cambanis et al.

(1981)). Moreover, elliptical densities can be written as f (θ) = κ 1
σ
ψ
(

θ2

σ2

)
, where κ

is a normalizing constant and ψ is a (density generator) function that captures the

shape of the distribution (Gómez et al. (2003)). Thus, the density depends only on

the standardized variable θ
σ
.

We show that equilibrium strategies (tni ) and a · (µn
i ) are linear in the standard

deviation σ, i.e., zn = (zni ) =
(

tni
σ

)
is the sequence of equilibrium critical types

for the standardized distribution with unit variance, and E
[
Θ|Θ ∈

[
tni−1, t

n
i

]]
=

σE
[
Z|Z ∈

[
zni−1, z

n
i

]]
, for Z := Θ

σ
.

Consider a typical equilibrium indifference condition

ti − aE [Θ|Θ ∈ [ti−1, ti]] = aE [Θ|Θ ∈ [ti, ti+1]]− ti.

A change of variables to z = θ
σ
, and thus dz = 1

σ
dθ, implies that

E [Θ|Θ ∈ [ti−1, ti]] =

ti∫
ti−1

θκ 1
σ
ψ
(

θ2

σ2

)
dθ

Pr (Θ ∈ [ti−1, ti])
=

σ
zi∫

zi−1

zκψ (z2) dz

Pr (Z ∈ [zi−1, zi])
= σE [Z|Θ ∈ [zi−1, zi]] ,
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with zi =
ti
σ
. Hence the indifference condition can be written as

zi − aE [Z|Z ∈ [zi−1, zi]] = aE [Z|Z ∈ [zi, zi+1]]− zi,

which is independent of the variance. As a consequence, the standardized equilibrium

thresholds zi are independent of the variance.

It follows that var(µn) is linear in σ2, var(µn) = ℓ(n, a)σ2, where ℓ(n, a) is inde-

pendent of σ2.

Finally, since E [µn] = E [θ] = 0 and E [µnΘ] = EE [µnΘ|Θ ∈ [θi, θi+1]] = E [(µn)2] =

var(µn), we have

EucomR (yR,Θ, a) = −E
[
(aµn − aΘ)2

]
= −a2E

[
(µn)2 − 2µnΘ+Θ2

]
= a2

(
var(µn)− σ2

)
= −a2 (1− ℓ(a, n))σ2.

ii) EudelR (yS,Θ, a) = E
[
− (Θ− aΘ)2

]
= − (1− a)2 σ2. 2

Proof of Proposition 2. The proof proceeds in three steps. In Step a), we

compare a partition in the quantile space under distribution f to the same partition

in the quantile space under distribution g. We start with a = 1 and then extend the

comparison to 0 < a < 1. In Step b), we consider a (partial) quantile partition which

features a combination of f and g. In Step c), we combine Steps a) and b) and use an

iterative procedure to derive an equilibrium partition out of the (partial) partition.

This allows us to rank the equilibrium quantiles under f and g.

Step a) Let h ∈ {f+, g+} and H ∈ {F+, G+}. As in Jewitt (1989) by a change of

variables, the conditional expectation can be rewritten as

µi+1 = E[Θ|Θ ∈ (ti, ti+1)] =

ti+1∫
ti

θ
h (θ)

H (ti+1)−H (ti)
dθ =

∫ qi+1

qi

H−1(z)

qi+1 − qi
dz

with qi+1 = H (ti+1) and qi = H (ti) .

Define QH(qi, qi+1) := H(µi+1) = H (E [Θ|H−1(qi) ≤ Θ ≤ H−1(qi+1)]).

Claim. The convex transform order implies an order of the quantiles of the condi-
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tional expectations: If G−1
+ F+(θ) is convex, then QF+(qi, qi+1) ≤ QG+(qi, qi+1) for all

qi, qi+1, qi ≤ qi+1, i = 1, . . . , n− 1.

Proof. Assume G−1
+ F+(θ) is convex. Jensen’s inequality implies

G−1
+ F+

(∫ qi+1

qi

F−1
+ (z)

1

F+(F
−1
+ (qi+1))− F+(F

−1
+ (qi))

dz

)

≤
∫ qi+1

qi

G−1
+ F+F

−1
+ (z)

1

qi+1 − qi
dz =

∫ qi+1

qi

G−1
+ (z)

1

qi+1 − qi
dz.

Monotonicity of G+ implies that

F+

(∫ qi+1

qi

F−1
+ (z)

1

qi+1 − qi
dz

)
≤ G+

(∫ qi+1

qi

G−1
+ (z)

1

qi+1 − qi
dz

)
.

This is equivalent to

F+

(
E
[
Θ|F−1

+ (qi) ≤ Θ ≤ F−1
+ (qi+1)

])
≤ G+

(
E
[
Θ|G−1

+ (qi) ≤ Θ ≤ G−1
+ (qi+1)

])
.

Thus, QF+(qi, qi+1) ≤ QG+(qi, qi+1). 2

Recall that the equilibrium thresholds satisfy tni − a · µn
i = a · µn

i+1 − tni , for i =

1, . . . , n. This can be written as tni = a
2
· (µn

i + µn
i+1). For now, take a = 1.

Applying Jensen’s inequality twice, we obtain

G−1
+ F+

(
1

2

∫ qi

qi−1

F−1
+ (z)

F+(F
−1
+ (qi))− F+(F

−1
+ (qi−1))

dz +
1

2

∫ qi+1

qi

F−1
+ (z)

F+(F
−1
+ (qi+1))− F+(F

−1
+ (qi))

dz

)
≤ 1

2
G−1

+ F+

(∫ qi

qi−1

F−1
+ (z)

1

qi − qi−1

dz

)
+

1

2
G−1

+ F+

(∫ qi+1

qi

F−1
+ (z)

1

qi+1 − qi
dz

)
≤ 1

2

∫ qi

qi−1

G−1
+ F+F

−1
+ (z)

1

qi − qi−1

dz +
1

2

∫ qi+1

qi

G−1
+ F+F

−1
+ (z)

1

qi+1 − qi
dz

=
1

2

∫ qi

qi−1

G−1
+ (z)

1

qi − qi−1

dz +
1

2

∫ qi+1

qi

G−1
+ (z)

1

qi+1 − qi
dz.
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Hence

F+

(
1

2

∫ qi

qi−1

F−1
+ (z)

1

qi − qi−1

dz +
1

2

∫ qi+1

qi

F−1
+ (z)

1

qi+1 − qi
dz

)
≤ G+

(
1

2

∫ qi

qi−1

G−1
+ (z)

1

qi − qi−1

dz +
1

2

∫ qi+1

qi

G−1
+ (z)

1

qi+1 − qi
dz

)
.

Define the functions v (qi) := 1
2

(
1

qi−qi−1

qi∫
qi−1

F−1
+ (z) dz + 1

qi+1−qi

qi+1∫
qi

F−1
+ (z) dz

)

and z (qi) :=
1
2

(
1

qi−qi−1

qi∫
qi−1

G−1
+ (z) dz + 1

qi+1−qi

qi+1∫
qi

G−1
+ (z) dz

)
.

Then the inequality can be written as

G+

(
z (qi)

v (qi)
v (qi)

)
≥ F+ (v (qi)) for all qi ∈ [qi−1, qi+1] .

Applying the inverse of G−1 and dividing by v (qi) , this is equivalent to

z (qi)

v (qi)
≥ G−1

+ F+ (v (qi))

v (qi)
for all qi ∈ [qi−1, qi+1] . (8)

We next want to introduce a ∈ (0, 1). We aim at showing that

G+

(
a
z (qi)

v (qi)
v (qi)

)
≥ F+ (av (qi)) for all a ∈ (0, 1) and all qi ∈ [qi−1, qi+1] .

Applying the inverse of G−1 and dividing by av (qi), this is equivalent to

z (qi)

v (qi)
≥ G−1

+ F+ (av (qi))

av (qi)
.

This is equivalent to (8) for a = 1. Moreover, note that the convex transform order

implies the star order (see Shaked and Shanthikumar (2007), p. 214): G−1
+ F+ (θ)

convex implies that
G−1

+ F+(θ)

θ
increases in θ.

To apply this order to our condition, note that av (u) increases in a and ranges

from 0 to v (qi) for a ∈ [0, 1] . Hence, setting a < 1 reduces the value of the right side

of the inequality, and since the inequality holds for a = 1, it continues to hold for

a < 1.
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Step b) Recall that in the quantile space, the equilibrium condition tni = a
2
· (µn

i +

µn
i+1) can be written as

qi,h = H+

a
2

 1

qi,h − qi−1,h

qi,h∫
qi−1,h

H−1
+ (z) dz +

1

qi+1,h − qi,h

qi+1,h∫
qi,h

H−1
+ (z) dz


 ,

for h = f, g and H = F,G.

Fix the equilibrium thresholds qi−1,f and qi+1,f , and consider qi = qi,gf as the

following function that combines F and G

G+

a
2

 1

qi − qi−1,f

qi∫
qi−1,f

G−1
+ (z) dz +

1

qi+1,f − qi

qi+1,f∫
qi

G−1
+ (z) dz


 .

By Jensen’s inequality, we have

G+

1

2

 1

qi − qi−1,f

qi∫
qi−1,f

G−1
+ (z) dz +

1

qi+1,f − qi

qi+1,f∫
qi

G−1
+ (z) dz




≥ F+

1

2

 1

qi − qi−1,f

qi∫
qi−1,f

F−1
+ (z) dz +

1

qi+1,f − qi

qi+1,f∫
qi

F−1
+ (z) dz


 ,

for all qi ∈ [qi−1,f , qi+1,f ]. Thus the same inequality holds in particular at qi,f . The

fact that
G−1

+ F (θ)

θ
is increasing in θ implies that

G+

a
2

 1

qi − qi−1,f

qi∫
qi−1,f

G−1
+ (z) dz +

1

qi+1,f − qi

qi+1,f∫
qi

G−1
+ (z) dz




≥ F+

a
2

 1

qi − qi−1,f

qi∫
qi−1,f

F−1
+ (z) dz +

1

qi+1,f − qi

qi+1,f∫
qi

F−1
+ (z) dz


 , (9)

for all qi ∈ [qi−1,f , qi+1,f ] .

Since condition (9) holds for any arbitrary (quantile) threshold qi, it holds for all
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i = 1, . . . , n.

Step c) Denote the equilibrium quantile partition under f+, q
n
i,f , i = 1, . . . , n, as

qni,f = F+

a
2

 1

qni,f − qni−1,f

qni,f∫
qni−1,f

F−1
+ (z) dz +

1

qni+1,f − qni,f

qni+1,f∫
qni,f

F−1
+ (z) dz




for all i = 1, . . . , n. By convention, qn0,f = 0 and qnn+1,f = 1.

By Steps a) and b), we therefore have

qni,f ≤ G+

a
2

 1

qni,f − qni−1,f

qni,f∫
qni−1,f

G−1
+ (z) dz +

1

qni+1,f − qni,f

qni+1,f∫
qni,f

G−1
+ (z) dz


 .

Let ti,gf := G−1
+

(
qni,f
)
. Then

ti,gf ≤ a

2

(
µi−1,g (ti−1,gf , ti,gf ) + µi,g (ti,gf , ti+1,gf )

)
. (10)

It follows from this inequality, that for any fixed ti−1,gf and ti+1,gf , the value of

ti = ti,gf is too low to be part of an equilibrium.

Given this observation, we consider the following iterative procedure: For any

fixed ti−1,gf , we denote the “partial equilibrium thresholds” under g by t
(∗)
j,g for all

j ≥ i , where the distribution is adjusted from f to g on the entire support, the

equilibrium thresholds above ti−1,gf are adjusted to g, tj = t
(∗)
j,g for j ≥ i, but the

equilibrium thresholds below ti−1,gf and not adjusted, tj = tj,gf for j < i.

At iteration step one, keep all thresholds ti = ti,gf for i = 1, . . . , n − 1 fixed and

let tn adjust to t
(∗)
n,g = t

(∗)
n,g (tn−1,gf ) . At t

(∗)
n,g, the sender is indifferent under g between

pooling upwards or downwards given that the receiver best replies with respect to g.

At iteration step l, keep all thresholds ti = ti,gf for i = 1, . . . , n − l fixed, adjust

threshold tn−l+1 to make the sender indifferent at t
(∗)
n−l+1,g = t

(∗)
n−l+1,g (tn−l,gf ), and

keep the sender indifferent at all thresholds t
(∗)
j,g for j ≥ n − l + 2. Note that all t

(∗)
j,g

depend recursively on the initial value tn−l,gf and on their respective predecessors

t
(∗)
n−l+1,g, . . . , t

(∗)
j−1,g.
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At iteration step one, we observe that by (10) , for tn = tn,gf ,

tn − aµn,g (tn−1,gf , tn) ≤ aµn+1,g

(
tn,Sg

)
− tn.

By logconcavity of the density, µn+1,g

(
tn,Sg

)
and µn,g (tn−1,gf , tn) each increase in tn

less than one for one. Hence, there exists a unique t
(∗)
n,g ≥ tn,gf such that

t(∗)n,g − aµn,g(tn−1,gf , t
(∗)
n,g) = aµn+1,g(t

(∗)
n,g,Sg)− t(∗)n,g. (11)

Consider an arbitrary iteration step l < n. Suppose that all thresholds t
(∗)
j,g for j =

l + 1, . . . , n have been adjusted ‘weakly upwards.’

Since increasing thresholds increases the right side of (10) , the inequality continues

to hold. It remains to be shown that there is a unique tl = t
(∗)
l,g such that

(
aµl+1,g(tl, t

(∗)
l+1,g)− tl

)
−
(
tl − aµl,g (tl−1,gf , tl)

)
= 0. (12)

Differentiating the left side of (12) with respect to tl, we get

−2 + a
∂

∂tl
µl,g (tl−1,gf , tl) + a

∂

∂tl
µl+1,g(tl, t

(∗)
l+1,g) + a

∂

∂tl+1

µl+1,g(tl, t
(∗)
l+1,g)

dt
(∗)
l+1,g

dtl
.

By logconcavity,
dt

(∗)
l+1

dtl
≤ 1 implies that this expression is negative. We show that

dt
(∗)
l+1

dtl
≤ 1 holds by induction: Totally differentiating (11) with respect to t

(∗)
n,g and

tn−1,gf , we find that

dt
(∗)
n,g

dtn−1,gf

=
a ∂
∂tn−1,gf

µn,g

(
tn−1,gf , t

(∗)
n,g

)
2− a ∂

∂t
(∗)
n,g

µn,g

(
tn−1,gf , t

(∗)
n,g

)
− a ∂

∂t
(∗)
n,g

µn+1,g

(
t
(∗)
n,g,Sg

) ≤ 1,

where the inequality is due to logconcavity of the density.
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Next, suppose that
dt

(∗)
l+1

dtl
≤ 1. Totally differentiating (12) we get

dt
(∗)
l,g

dtl−1,gf

=
a ∂
∂tl−1,gf

µl,g(tl−1,gf , t
(∗)
l,g )

2− a ∂

∂t
(∗)
l,g

µl,g(tl−1,gf , t
(∗)
l,g )− a ∂

∂t
(∗)
l,g

µl+1,g(t
(∗)
l,g , t

(∗)
l+1,g)− a ∂

∂t
(∗)
l+1,g

µl+1,g(t
(∗)
l,g , t

(∗)
l+1,g)

dt
(∗)
l+1,g

dt
(∗)
l,g

≤ 1,

by logconcavity of the density and the assumption that
dt

(∗)
l+1

dtl
≤ 1. This concludes the

argument.

Switching back to quantiles, we have demonstrated tni,g ≥ ti,gf = G−1
+

(
qni,f
)
, and

hence

G+

(
tni,g
)
≥ qni,f = F+

(
tni,f
)
for all i.

2

Proof of Proposition 3.

Assume that the equilibrium partition under distribution g, tni,g, satisfies the fol-

lowing condition,

Ef

[
Θf |Θf ∈

[
tni−1,g, t

n
i,g

]]
+ Ef

[
Θf |Θf ∈

[
tni,g, t

n
i+1,g

]]
>Eg

[
Θg|Θg ∈

[
tni−1,g, t

n
i,g

]]
+ Eg

[
Θg|Θg ∈

[
tni,g, t

n
i+1,g

]]
, (13)

where tnn+1,g = Sg and tn0,g = 0.

To prove the proposition, we need to show that quantiles and receiver induced

actions are more risky in the sense of a mean-variance-preserving spread under dis-

tribution F than under distribution G. Recall from the proof of Proposition 2 that

Θf+ ≤c Θg+ implies that the quantiles satisfy F+

(
tni,f
)
≤ G+

(
tni,g
)
for all i. Thus, to

prove the proposition, it suffices to order the receiver’s induced actions as well. In par-

ticular, we show that condition (13) implies that under distribution f the equilibrium

critical types are strictly higher and strictly better for the sender than the equilibrium

critical types under distribution g. Finally, we will show that the conditions stated

in Proposition 3 are sufficient for (13) to hold.
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As Figure 4.2 and the uniform conditional variability order, Θf+ ≤uv Θg+ , re-

veal, the local stochastic order depends on the location of the equilibrium thresholds

considered. By symmetry, we focus on the positive half of the support only. For

intervals below (above) the mode m, the truncated distributions under f+ dominate

(are dominated by) the truncated distributions under g+ in the likelihood ratio or-

der. To have some control over which order applies to which partition intervals – for

example, to the first n intervals – it is helpful to rely on monotonicity of equilibria in

the alignment parameter a:

Claim A.1 For any symmetric logconcave density and for any n, the equilibrium

critical types tni (a) and induced means µn
i (a) are strictly increasing in a for all i.

For a proof see, e.g., Deimen and Szalay (2023) or Chen and Gordon (2015). Moreover,

we note that a→ 0 implies that tni (a) → 0 for i = 1, . . . , n.

The proof of Proposition 3, is completed through the following sequence of lemmas

that show that condition (13) is satisfied.

Lemma A.4 (Metzger and Rüschendorf (1991))

Let f+(θ)
g+(θ)

be unimodal with interior mode m. The function F+(x)
G+(x)

inherits unimodality

with mode m1 > m, the function (1−F+(x))
(1−G+(x))

inherits unimodality with mode m2 < m.

Moreover, there exists a unique x̂ such that F+ (θ) < G+ (θ) for θ ∈ (0, x̂), F+(x̂) =

G+(x̂), and F+ (θ) > G+ (θ) for θ ∈ (x̂,∞).

Proof. Metzger and Rüschendorf (1991) Section 2. 2

For the following lemma, since
Sh∫
x

(1−H+ (θ)) dθ =
∞∫
x

(1−H+ (θ)) dθ as H+(θ) =

1 for θ ≥ Sh, we unify notation and write
∫∞
x

for infinite as well as for finite supports,

[0,Sh].

Lemma A.5 (i) Let m denote the mode of the function f+(θ)
g+(θ)

. Conditional on θ ∈
[0,m), the distributions f+ and g+ satisfy the monotone likelihood ratio property.

(ii) The function

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

is unimodal in x ∈ [0,Sf ] with mode m′ ∈ (0,m2);

for 0 ≤ x ≤ (<)m′, we have E [Θf |Θf ≥ x] ≥ (>)E [Θg|Θg ≥ x].
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Proof of Lemma A.5. (i) Follows from the proof of Lemma 4.

(ii) We first show that

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

is unimodal with mode m′. We then show that

the mode m′ is interior.

Straightforward differentiation gives

∂

∂x

∞∫
x

(1− F+ (θ)) dθ

∞∫
x

(1−G+ (θ)) dθ

=

− (1− F+ (x))
∞∫
x

(1−G+ (θ)) dθ + (1−G+ (x))
∞∫
x

(1− F+ (θ)) dθ(∞∫
x

(1−G+ (θ)) dθ

)2 .

The sign of the derivative is positive if and only if

(1− F+ (x))

∞∫
x

(1−G+ (θ)) dθ < (1−G+ (x))

∞∫
x

(1− F+ (θ)) dθ.

Note that by an integration by parts for any x ∈ [0,Sh), we have that for h+ ∈
{f+, g+} and H+ ∈ {F+, G+}

E [Θ|Θ ≥ x] =

∞∫
x

θh+ (θ) dθ

1−H+ (x)
= x+

∞∫
x

(1−H+ (θ)) dθ

1−H+ (x)
.

Hence, ∂
∂x

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

⋛ 0 if and only if E [Θf |Θf ≥ x] ⋛ E [Θg|Θg ≥ x].

Since a mode is an extremum, it is either at the boundary or satisfies the first

order condition E [Θf |Θf ≥ x∗] = E [Θg|Θg ≥ x∗] . We next prove that there is at

most one such value x∗ = m′.

By Lemma A.4, the function (1−F+(x))
(1−G+(x))

is unimodal with modem2. Thus for x ≥ m2

the function is decreasing, equivalent to the conditional distribution of Θg conditional

on Θg ≥ x under distribution G+ first order stochastically dominating the conditional

distribution of Θf conditional on Θf ≥ x under F+: for x ≥ m2,

1− F+(x)

1−G+(x)
>

1− F+(θ)

1−G+(θ)
⇔ F+(θ)− F+(x)

1− F+(x)
>
G+(θ)−G+(x)

1−G+(x)
.
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By implication, for x ≥ m2 we have E [Θf |Θf ≥ x] < E [Θg|Θg ≥ x] and

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

is strictly decreasing.

For x∗ < m2, recall that by the first order condition we have

− (1− F+ (x∗))

∞∫
x∗

(1−G+ (θ)) dθ + (1−G+ (x∗))

∞∫
x∗

(1− F+ (θ)) dθ = 0.

Differentiating a second time and evaluating at x∗, we get

f+ (x∗)

∞∫
x∗

(1−G+ (θ)) dθ − g+ (x∗)

∞∫
x∗

(1− F+ (θ)) dθ

< g+ (x∗)
1− F+ (x)

(1−G+ (x))

∞∫
x∗

(1−G+ (θ)) dθ − g+ (x∗)

∞∫
x∗

(1− F+ (θ)) dθ = 0,

where the equality follows from the first order condition. For the inequality note that

the function (1−F+(x))
(1−G+(x))

is increasing if and only if the hazard rates of the distributions

satisfy
f+ (x)

1− F+ (x)
<

g+ (x)

(1−G+ (x))
,

thus for x < m2. The second derivative being negative implies that any stationary

point must be a maximum, hence there is at most one such point m′.

Finally, we prove that the mode m′ of

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

must be interior. For contra-

diction suppose that m′ is at the boundary. From the first part of the proof, m′ ≤ m2,

so that m′ cannot be at the upper end of the support. Thus suppose that m′ = 0, so

that ∂
∂x

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

< 0 for all x ∈ [0,Sf ].

The variance of the distribution over the whole support (positive and negative)

can by symmetry (h+ = 2h) and by integrating by parts twice be written as

∞∫
−∞

θ2h (θ) dθ =

∞∫
0

θ2h+ (θ) dθ = 2

∞∫
0

θ (1−H+ (θ)) dθ = 2

∞∫
0

∞∫
x

(1−H+ (θ)) dθdx,
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with h ∈ {f, g}, h+ ∈ {f+, g+} , and H+ ∈ {F+, G+}.
We can further rewrite and integrate by parts to obtain

2

∞∫
0

∞∫
x

(1− F+ (θ)) dθdx = 2

∞∫
0

∞∫
x

(1− F+ (θ)) dθ

∞∫
x

(1−G+ (θ)) dθ

∞∫
x

(1−G+ (θ)) dθdx

= −2

∞∫
z

(1− F+ (θ)) dθ

∞∫
z

(1−G+ (θ)) dθ

∞∫
z

∞∫
x

(1−G+ (θ)) dθdx

∣∣∣∣∣∣∣∣
∞

0

+ 2

∞∫
0

∂

∂z

∞∫
z

(1− F+ (θ)) dθ

∞∫
z

(1−G+ (θ)) dθ

∞∫
z

∞∫
x

(1−G+ (θ)) dθdxdz

= 2

∞∫
0

(1− F+ (θ)) dθ

∞∫
0

(1−G+ (θ)) dθ

∞∫
0

∞∫
x

(1−G+ (θ)) dθdx+ 2

∞∫
0

∂

∂z

∞∫
z

(1− F+ (θ)) dθ

∞∫
z

(1−G+ (θ)) dθ

∞∫
z

∞∫
x

(1−G+ (θ)) dθdxdz

Substituting for µh+
=

∞∫
0

(1−H (θ)) dθ and σ2
h = 2

∞∫
0

∞∫
x

(1−H+ (θ)) dθdx, we have

that

σ2
f −

µf+

µg+

σ2
g = 2

∞∫
0

∂

∂z

∞∫
z

(1− F+ (θ)) dθ

∞∫
z

(1−G+ (θ)) dθ

∞∫
z

∞∫
x

(1−G+ (θ)) dθdxdz.

We have that m′ = 0 implies
µf+

µg+
≤ 1. Moreover, by assumption σ2

f = σ2
g. Hence

the left side is non-negative. However, the right side is strictly negative due to our

contradictory hypothesis that ∂
∂z

∞∫
z
(1−F+(θ))dθ

∞∫
z
(1−G+(θ))dθ

< 0 for all z ∈ [0,Sf ]. 2

To complete the proof, we note that Lemma A.5 implies that (13) applies for

a sufficiently low. This in turn implies that for a fixed sender partition (tni,g), the

receiver’s induced actions are higher under f+ than under g+. Hence, the equilibrium

under f+ needs to feature higher receiver equilibrium induced actions:

Lemma A.6 For any two symmetric, logconcave densities f, g with the same vari-

ance and with truncated densities f+, g+ that satisfy Θf+ ≤uv Θg+, there exists a

unique a′ such that

E
[
Θf |Θf ≥ tnn,g (a

′)
]
= E

[
Θg|Θg ≥ tnn,g (a

′)
]
. Moreover, for a < a′, all n + 1 re-

ceiver equilibrium actions under distribution f+ are strictly higher than under g+,

a · µf

(
tni−1,f , t

n
i,f

)
> a · µn

g

(
tni−1,g, t

n
i,g

)
for all i.
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Proof of Lemma A.6. By Lemma A.5, the tail-truncated expectation functions,

E [Θf |Θf ≥ x] and E [Θg|Θg ≥ x] , cross exactly once in the interior of the positive

half of the support. The intersection is at x = m′, the mode of the ratio

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

.

Hence, E
[
Θf |Θf ≥ tnn,g (a)

]
≥ E

[
Θg|Θg ≥ tnn,g (a)

]
if and only if tnn,g (a) ≤ m′. By

Claim A.1, tnn,g (a) is strictly increasing in a, so by continuity there is a unique a′ such

that tnn,g (a
′) = m′ and moreover, tnn,g (a) < m′ for a < a′.

By Lemma A.5, the distributions below tnn,g (a) satisfy that f+ (θ) /g+ (θ) increas-

ing in θ for all θ ≤ m if tnn,g (a) ≤ m. By Lemma A.5, m′ < m2. By Lemma A.4,

m2 < m. Hence, a ≤ a′ implies that f+ (θ) /g+ (θ) is increasing for all θ ≤ tnn,g (a) .

Since the monotone likelihood ratio property is preserved under multiplication of a

constant, the truncated distribution below tnn,g (a) satisfies the monotone likelihood

ratio property, ∂
∂θ

f+(θ)

F+(tnn,g(a))
/ g+(θ)

G+(tnn,g(a))
> 0. More generally, the conditional distri-

butions truncated to any interval
[
tni−1,g (a) , t

n
i,g (a)

)
satisfy ∂

∂θ
f+(θ)

F+(tni,g(a))−F+(tni−1,g(a))
/

g+(θ)

G+(tni,g(a))−G+(tni−1,g(a))
> 0 for i = 1, . . . , n. As is well known, the monotone likeli-

hood ratio property implies first order stochastic dominance, which in turn implies

that inequality (13) is satisfied for all i = 1, . . . , n if we keep the partition at the

equilibrium partition under g+, (t
n
i,g). Therefore, we can conclude that both the

equilibrium critical types and the receiver’s induced actions are increased so that

µf

(
tni−1,f (a) , t

n
i,f (a)

)
≥ µn

g

(
tni−1,g (a) , t

n
i,g (a)

)
for i = 1, . . . , n for a ≤ a′. 2

2

Proof of Proposition 4. The proof of the second part regarding linear tail-

truncated expectations is given in Deimen and Szalay (2019). The proof of the first

part extends that proof to convex tail-truncated expectations. Before proving the

result by induction, we make some preliminary observations on the conditional prob-

abilities and the tail-truncated expectation function. A more detailed version of the

proof can be found in the working paper version Deimen and Szalay (2023).

For k = 2, . . . , n, define p̂k−1 as the probability that θ ∈ [tk−2, tk−1] conditional on

θ ≥ tk−2,

p̂k−1 ≡
F+ (tk−1)− F+ (tk−2)

1− F+ (tk−2)
.
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Accordingly, 1 − p̂k−1 = 1−F+(tk−1)

1−F+(tk−2)
is the probability that θ ≥ tk−1, conditional on

θ ≥ tk−2. Note that p̂k−1µk−1 = E [θ| θ ≥ tk−2]− (1− p̂k−1)E [θ| θ ≥ tk−1] . Solving for

p̂k−1, we can write the probabilities as

p̂k−1 =
E [θ| θ ≥ tk−1]− E [θ| θ ≥ tk−2]

E [θ| θ ≥ tk−1]− µk−1

and 1− p̂k−1 =
E [θ| θ ≥ tk−2]− µk−1

E [θ| θ ≥ tk−1]− µk−1

.

Observe that (1− p̂k−2)·p̂k−1 is the probability of the event θ ∈ [tk−2, tk−1] conditional

on θ ≥ tk−3, and (1− p̂k−2) · (1− p̂k−1) is the probability of the event θ ≥ tk−1

conditional on θ ≥ tk−3. To see this, note that 1 − p̂k−2 = Pr [θ ≥ tk−2| θ ≥ tk−3] =
1−F+(tk−2)

1−F+(tk−3)
and recall that p̂k−1 =

F+(tk−1)−F+(tk−2)

1−F+(tk−2)
.

Define, for all t > 0

α (t) :=
E [θ| θ ≥ t]− E [θ| θ ≥ 0]

t
=
ϕ(t)− ϕ(0)

t
.

Define µ+ := ϕ(0) = E [θ| θ ≥ 0]. Note that ϕ(t) = E [θ| θ ≥ t] can always be written

as the pseudo linear interpolation E [θ| θ ≥ t] = µ+ + t · α (t) . In the case of a linear

tail-truncated expectation, α(t) is a constant. In the convex case, we show that α(t)

is increasing in t:

For t = 0, we take the limit α (0) = limt→0
E[ θ|θ≥t]−µ+

t
= ∂

∂t
E [θ| θ ≥ t]|t=0 .

Likewise, by l’Hôpital’s rule, limt→∞
E[ θ|θ≥t]−µ+

t
= limt→∞

∂
∂t
E [θ| θ ≥ t] . Moreover,

α′ (t) =
∂
∂t

E[ θ|θ≥t]t−(E[ θ|θ≥t]−µ+)
t2

= 1
t

(
∂
∂t
E [θ| θ ≥ t]− α (t)

)
. By the fundamental theo-

rem of calculus α (t) =
E[ θ|θ≥t]−µ+

t
=

∫ t
0

∂
∂z

E[ θ|θ≥z]dz

t
. By the intermediate value theorem

for integrals, there is some value t∗ ∈ (0, t) such that
∫ t
0

∂
∂z

E[ θ|θ≥z]dz

t
= ∂

∂z
E [θ| θ ≥ z]

∣∣
z=t∗

.

Hence, α′ (t) = 1
t

(
∂
∂z
E [θ| θ ≥ z]

∣∣
z=t

− ∂
∂z
E [θ| θ ≥ z]

∣∣
z=t∗

)
≥ 0, where the inequality

follows from t∗ ∈ (0, t) and from convexity of E [θ| θ ≥ t] in t. Thus, α(t) is increasing

in t and hence minimal at α (0) =: α.

Recall the alignment parameter a ∈ (0, 1). Define ĉ := α · a.
Assume that ĉ ∈ (0, 2). Note that for all distributions with logconcave densities

this is not a constraint. In this case, α ≤ α(t) ≤ 1 for all t, since logconcave densities

have a decreasing mean residual life (see Bagnoli and Bergstrom (2005), Theorem 3

and Lemma 2) and α(t) > 1 for some t > 0 would imply that the mean residual life
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at t is higher than at zero, a contradiction.

Let Xn
k

(
tnk−1

)
be equal to ĉ2 times the expected squared deviation of the truncated

means from µ+, conditional on θ ≥ tnk−1,

Xn
k

(
tnk−1

)
:= p̂nk

(
ĉµn

k − ĉµ+

)2
+ (1− p̂nk)X

n
k+1(tk).

Induction hypothesis.

Xn
k

(
tnk−1

)
≥ Xn

k

(
tnk−1

)
:=

ĉ

2− ĉ

(
ĉµ+ + ĉµn

k

) (
ĉµ+ − ĉµn

k

)
+ 2

(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

)( ĉ

2− ĉ

(
µ+ + µn

k

)
− ĉµ+

)
.

Induction base. The proof of the induction base is a simplified version of the

proof of the induction step and therefore omitted.

Induction step.

By definition, Xn
k−1

(
tnk−2

)
= p̂k−1

(
ĉµn

k−1 − ĉµ+

)2
+ (1− p̂k−1)X

n
k

(
tnk−1

)
. Since

Xn
k

(
tnk−1

)
≥ Xn

k

(
tnk−1

)
, we have

Xn
k−1

(
tnk−2

)
≥ p̂k−1

(
ĉµn

k−1 − ĉµ+

)2
+ (1− p̂k−1)X

n
k

(
tnk−1

)
=: X̂n

k−1

(
tnk−2

)
.

Substituting for the probability p̂k−1 and for Xn
k

(
tnk−1

)
, we obtain

X̂n
k−1

(
tnk−2

)
=
ĉE
[
θ| θ ≥ tnk−1

]
− ĉE

[
θ| θ ≥ tnk−2

]
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

(
ĉµn

k−1 − ĉµ+

)2
+
ĉE [θ| θ ≥ tk−2]− ĉµn

k−1

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

 ĉ
2−ĉ

(
ĉµ+ + ĉµn

k

) (
ĉµ+ − ĉµn

k

)
+2
(
ĉE [θ| θ ≥ tk−1]− ĉµ+

) (
ĉ

2−ĉ

(
µ+ + µn

k

)
− ĉµ+

)
 .

Expanding the numerators of the probabilities by ±ĉµ+ and reorganizing accord-

ing to common factors, we can write X̂n
k−1

(
tnk−2

)
= An

k−1 +Bn
k−1, with

An
k−1 ≡

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

(
ĉµn

k−1 − ĉµ+

)2
+

ĉµ+ − ĉµn
k−1

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

·
(

ĉ

2− ĉ

(
ĉµ+ + ĉµn

k

) (
ĉµ+ − ĉµn

k

)
+ 2

(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

)( ĉ

2− ĉ

(
µ+ + µn

k

)
− ĉµ+

))
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and

Bn
k−1 ≡

ĉµ+ − ĉE
[
θ| θ ≥ tnk−2

]
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

(
ĉµn

k−1 − ĉµ+

)2
+

ĉE
[
θ| θ ≥ tnk−2

]
− ĉµ+

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

·
(

ĉ

2− ĉ

(
ĉµ+ + ĉµn

k

) (
ĉµ+ − ĉµn

k

)
+ 2

(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

)( ĉ

2− ĉ

(
µ+ + µn

k

)
− ĉµ+

))
.

The indifference condition of type tnk−1, ĉµ
n
k = 2αtnk−1 − ĉµn

k−1, allows us to substitute

for ĉµn
k . Hence,

An
k−1 =

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

(
ĉµn

k−1 − ĉµ+

)2
+

ĉµ+ − ĉµn
k−1

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

·
(

ĉ

2− ĉ

(
ĉµ+ + 2αtnk−1 − ĉµn

k−1

) (
ĉµ+ −

(
2αtnk−1 − ĉµn

k−1

))
+2
(
ĉE [θ| θ ≥ tk−1]− ĉµ+

)( 1

2− ĉ

(
ĉµ+ 2αtk−1 − ĉµn

k−1

)
− ĉµ+

))
.

Collecting terms with the common factor
ĉE[ θ|θ≥tnk−1]−ĉµ+

ĉE[ θ|θ≥tnk−1]−ĉµn
k−1

(
ĉµn

k−1 − ĉµ+

)
and simpli-

fying, we get

An
k−1 =

ĉ

2− ĉ

(
ĉµ+ − ĉµn

k−1

) (
ĉµ+ + ĉµn

k−1

)
+

ĉµ+ − ĉµn
k−1

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

 ĉ
2−ĉ

(
−4
(
αtnk−1

)2
+ 4αtnk−1cµk−1

)
+
(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

) (
4

2−ĉ

(
αtnk−1 − ĉµn

k−1

))
 .

Similarly, we can derive

Bn
k−1 = 2

(
ĉE
[
θ| θ ≥ tnk−2

]
− ĉµ+

)( ĉ

2− ĉ

(
µ+ + µn

k−1

)
− ĉµ+

)

+
ĉE
[
θ| θ ≥ tnk−2

]
− ĉµ+

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

 ĉ
2−ĉ

(
−4
(
αtnk−1

)2
+ 4αtnk−1ĉµ

n
k−1

)
+
(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

) (
4

2−ĉ
αtnk−1 − 4

2−ĉ
ĉµn

k−1

)
 .

We aim at showing that the second lines in Ak and Bk respectively are both positive.

We then obtain a lower bound on X̂n
k−1 by discarding them.
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Note that

ĉµ+ − ĉµn
k−1

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

+
ĉE
[
θ| θ ≥ tnk−2

]
− ĉµ+

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

=
ĉE
[
θ| θ ≥ tnk−2

]
− ĉµn

k−1

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

.

Since E
[
θ| θ ≥ tnk−1

]
> E

[
θ| θ ≥ tnk−2

]
> E

[
θ| θ ∈

[
tnk−2, t

n
k−1

]]
= µn

k−1, both the

denominator and the numerator are positive.

By the definitions of α, α, and by convexity, ĉE
[
θ| θ ≥ tnk−1

]
−ĉµ+ = ĉα

(
tnk−1

)
tnk−1 ≥

ĉαtnk−1.Moreover, since a < 1 and tnk−1 ≥ µn
k−1, αt

n
k−1− ĉµn

k−1 = α
(
tnk−1 − aµn

k−1

)
≥ 0.

Taken together, we get

(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

)( 4

2− ĉ
αtnk−1 −

4

2− ĉ
ĉµn

k−1

)
≥ ĉαtnk−1

(
4

2− ĉ
αtnk−1 −

4

2− ĉ
ĉµn

k−1

)
,

and therefore

ĉ

2− ĉ

(
−4
(
αtnk−1

)2
+ 4αtnk−1ĉµ

n
k−1

)
+
(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

)( 4

2− ĉ
αtnk−1 −

4

2− ĉ
ĉµn

k−1

)
≥ ĉ

2− ĉ

(
−4
(
αtnk−1

)2
+ 4αtnk−1ĉµ

n
k−1

)
+ ĉαtnk−1

(
4

2− ĉ
αtnk−1 −

4

2− ĉ
ĉµn

k−1

)
= 0.

Note that all inequalities involving α are strict for the case in which α
(
tnk−1

)
> α.

This implies that the second lines in An
k and Bn

k are indeed positive. Hence, we have

Xn
k−1

(
tnk−2

)
≥ X̂n

k−1

(
tnk−2

)
≥ ĉ

2− ĉ

(
ĉµ+ − ĉµn

k−1

) (
ĉµ+ + ĉµn

k−1

)
+2
(
ĉE
[
θ| θ ≥ tnk−2

]
− ĉµ+

)( ĉ

2− ĉ

(
µ+ + µn

k−1

)
− ĉµ+

)
.

This concludes the induction step.

It follows that Xn
1 (tn0 ) ≥ ĉ

2−ĉ

(
ĉµn

1 + ĉµ+

) (
ĉµ+ − ĉµn

1

)
.

By definition, Xn
1 (tn0 ) = E

[(
ĉµn

i − ĉµ+

)2]
. Canceling ĉ, we get

E
[(
µn
i − µ+

)2] ≥ αa

2− αa

(
µ2
+ − (µn

1 )
2)
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with strict inequality if E [θ| θ ≥ t] is strictly convex in t. Decentering again and

noting that by the law of iterated expectations E
[
µn
i µ+

]
= E

[
(µ+)

2
]
, we can write

E
[
(µn

i )
2] ≥ αa

2− αa

(
µ2
+ − (µn

1 )
2)+ µ2

+.

Recall that ϕ(0) = µ+ and α = ϕ′(0). Thus, for limit n→ ∞, we have µn
1 → 0 and

var(µ∞) = E
[
(µ∞

i )2
]
≥ αa

2− αa
µ2
+ + µ2

+ =
2

2− ϕ′(0)a
ϕ(0)2.

2

Proof of Lemma 2. Straightforward integration gives for any [t, t] ⊆
[
0,− s

δ

]
,

E
[
Θ|Θ ∈ [t, t]

]
=
s+ t

1− δ
− 1

1− δ

(
t− t

)
1−

(
1+ δ

s
t

1+ δ
s
t

)− 1
δ

. (14)

For the special case of t = − s
δ
and t ∈

[
0,− s

δ

]
, we get

E [Θ|Θ ≥ t] = E [Θ|Θ ≥ 0] +
1

1− δ
· t = s+ t

1− δ
. (15)

Hence, the generalized Pareto distribution features linear tail-truncated expectations.

Therefore, we can apply the value characterization of Deimen and Szalay (2019),

which derives the expected utility of a limit equilibrium given in (4) as an upper

bound on the expected utilities of finite equilibria. The variance of µn in a Even

equilibrium is given by

var(µn) =
2

2− a
1−δ

µ2
+ −

a
1−δ

2− a
1−δ

(µn
1 )

2 .

The variance of µn in an Odd equilibrium is given by

var(µn) =

(
1− Pr

[
Θ ∈

[
−aµ

n
2

2
,
aµn

2

2

)])
·

(
2

2− a
1−δ

µ2
+ +

a
1−δ

2− a
1−δ

µn
2µ+

)
.

Deimen and Szalay (2019) shows that a limit equilibrium exists for the special case of
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δ = 0. Here, we extend the proof of existence of a limit equilibrium in Proposition 1 to

the class of all logconcave densities, which includes the generalized Pareto distribution

with δ ∈ [−1, 0]. 2

Proof of Proposition 5. One can show that our limit equilibrium yields a higher

payoff than any finite equilibrium in the communication game. Compare the receiver’s

expected utility in a limit equilibrium under communication

EuR (aµ∞,Θ, a) = a2
(
var(µ∞)− σ2

)
= a2

(
2− 1

1−δ

2− a
1−δ

σ2 − σ2

)
= −a2σ2 1− a

2− a− 2δ

to the receiver’s expected utility under delegation EuR (Θ,Θ, a) = − (1− a)2 σ2. The

receiver prefers delegation over communication if

− (1− a)2 σ2 ≥ −a2σ2 1− a

2− a− 2δ
⇔ δ ≥ 2− 3a

2− 2a
.

2

Lemma A.7 Assuming symmetry and logconcavity, the distributions in the general-

ized Pareto class satisfy Definitions 1 and 2.

Proof of Lemma A.7. Take two members f, g of the generalized Pareto family

with parameters s, δ and s′, δ′ respectively, such that s′ < s, 0 ≥ δ′ > δ ≥ −1, and

− s
δ
< − s′

δ′
. Thus, let

f+ =
1

s

(
1 +

δ

s
θ

)− 1
δ
−1

and g+ =
1

s′

(
1 +

δ′

s′
θ

)− 1
δ′−1

.

Consider Θf+ ≤c Θg+: As shown in the proof of Lemma A.8, with G+ := 1−G+

and F+ := 1− F+, we can equivalently check convexity of G
−1

+ F+ (θ):

We haveG+(θ) =
(
1 + s′

δ′
θ
)− 1

δ′ and F+(θ) =
(
1 + s

δ
θ
)− 1

δ . ThusG
−1

+ (u) =
(
u−δ′ − 1

)
δ′

s′

and

G
−1

+ F+ (θ) =

((
1 +

s

δ
θ
) δ′

δ − 1

)
δ′

s′
.
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Differentiating twice, we get ∂2

∂θ2
G

−1

+ F+ (θ) =

(
δ′

δ

(
δ′

δ
− 1
) (

1 + s
δ
θ
) δ′

δ
−2
)(

s
δ

)2 δ′

s′
> 0,

where the inequality follows from noting that δ < δ′ < 0 implies that 0 < δ′

δ
< 1.

Consider Θf+ ≤uv Θg+ : Note that f+
g+

is increasing (decreasing) if
f ′
+

f+
> (<)

g′+
g+
.

Noting that

f ′
+

f+
=

− (1 + δ) 1
s2

(
1 + δ

s
θ
)− 1

δ
−2

1
s

(
1 + δ

s
θ
)− 1

δ
−1

= − (1 + δ)
1

s

(
1 +

δ

s
θ

)−1

and
g′+
g+

= − (1 + δ′)
1

s′

(
1 +

δ′

s′
θ

)−1

,

we observe that
f ′
+

f+
>

g′+
g+

if and only if

− (1 + δ)
1

s

(
1 +

δ

s
θ

)−1

> − (1 + δ′)
1

s′

(
1 +

δ′

s′
θ

)−1

. (16)

At θ = 0, inequality (16) is satisfied since s′ < s and δ′ > δ imply (1 + δ′) 1
s′
>

(1 + δ) 1
s
.

For 0 < θ < − s
δ
, inequality (16) is equivalent to

(1 + δ′)
1

s′

(
1 +

δ

s
θ

)
> (1 + δ)

1

s

(
1 +

δ′

s′
θ

)
. (17)

The left side of (17) decreases in θ at rate (1 + δ′) 1
s′

δ
s
, while the right side decreases

at rate (1 + δ) 1
s
δ′

s′
. Now δ < δ′ implies that (1 + δ′) 1

s′
δ
s
< (1 + δ) 1

s
δ′

s′
, so the left side

of (17) decreases faster.

Finally, at θ = − s
δ
, the left side of (17) is zero, while the right side is positive, so

the inequality is reversed.

It follows that there exists a unique interior mode. 2

Proof of Lemma 3. Since the Gaussian distribution features a convex tail-

truncated expectation (see Sampford (1953)), the minimal slope for the tail-truncated

55



expectation is obtained at θ = 0.

∂

∂t
E [Θ|Θ ≥ t]

∣∣∣∣
t=0

= (E [Θ|Θ ≥ t]− t)
f (t)

1− F (t)

∣∣∣∣
t=0

=
ϕ(0)

σ
2

1√
2π
.

Moreover, we have E [Θ|Θ ≥ t]|t=0 = ϕ(0) = σ f(t)
1−F (t)

∣∣∣
t=0

= σ
√
2√
π
. Substituting in (4)

for ϕ(0) and the minimal slope, we obtain the result. 2

Lemma A.8 Denote the Gaussian distribution by F and the Laplace distribution by

G,

i) then Θf+ ≤c Θg+.

ii) then Θf+ ≤uv Θg+.

iii) then F induces a higher value of communication than G for a < 0.858.

Proof of Lemma A.8. i) Follows from van Zwet (1964) p.59, as the Gaussian

distribution has an increasing hazard rate.

ii) Let g+ be the Laplace and f+ be the Gaussian densities truncated to θ ≥ 0.

Then

f+ (θ)

g+ (θ)
=

1√
2πσ

e−
θ2

2σ2

√
2
σ
e−

√
2

σ
θ

=
e

(√
2

σ
θ− θ2

2σ2

)
2
√
π

,

and we observe that f+(θ)
g+(θ)

is increasing for low levels of θ and decreasing for high levels

of θ.

iii) Comparing the values of communicating under the Gaussian and Laplace dis-

tributions, we find that the Gaussian distribution induces a higher value of commu-

nication than the Laplace:

a2
( 4

π

2− a 2
π

σ2 − σ2

)
≥ a2

(
1

2− a
σ2 − σ2

)
, (18)

which holds for a < 0.858. 2

Proof of Proposition 6. For the Laplace distribution, communication is preferred

over delegation if

a2
(

1

2− a
σ2 − σ2

)
≥ − (1− a)2 σ2, (19)
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which holds if and only if a ≤ 2
3
. Therefore, for a ≤ 2

3
, (19) and (18) form a chain

of inequalities implying that communication is also preferred over delegation for the

Gaussian distribution.

If the state follows a Gaussian distribution, using the lower bound for communi-

cation, we obtain that communication is preferred over delegation if

a2
( 4

π

2− a 2
π

σ2 − σ2

)
≥ − (1− a)2 σ2,

which holds for a < 0.702. Hence, for a ∈
(
2
3
, 0.702

)
delegation is strictly optimal if

the state follows a Laplace distribution while communication is strictly optimal if the

state follows a Gaussian distribution. 2

Proof of Lemma 4. Since the supports are assumed to be R, we have supp(f) ⊆
supp(g). It remains to be shown that the ratio f+(θ)

g+(θ)
is unimodal with mode m an

interior maximum.

Logconcavity of the ratio f+(θ)
g+(θ)

is equivalent to ∂
∂θ

(
∂
∂θ

f+(θ)

f+(θ)
−

∂
∂θ

g+(θ)

g+(θ)

)
≤ 0. That

the difference is falling implies that one of three cases holds: either the difference is

positive for all θ,
∂
∂θ

f+(θ)

f+(θ)
>

∂
∂θ

g+(θ)

g+(θ)
, negative for all θ,

∂
∂θ

f+(θ)

f+(θ)
<

∂
∂θ

g+(θ)

g+(θ)
, or changes

sign once, i.e., there is some value m such that
∂
∂θ

f+(θ)|θ=m

f+(m)
=

∂
∂θ

g+(θ)|θ=m

g+(m)
and

∂
∂θ

f+(θ)

f+(θ)
>

∂
∂θ

g+(θ)

g+(θ)
for θ ∈ [0,m) and

∂
∂θ

f+(θ)

f+(θ)
<

∂
∂θ

g+(θ)

g+(θ)
for θ ∈ (m,S].

The first two cases amount to MLRP on the positive half and can be ruled out

by the following argument: In the first case, monotonicity of the likelihood ratio for

all θ > 0 implies that F+ (θ) and G+ (θ) are ranked in the usual stochastic order,

Θf+ ≥st Θg+. By symmetry, this implies that F (θ) and G (θ) are ordered in the

convex order, Θf+ ≥cx Θg+. In the second case, both relations are reversed. Both

cases imply that the distributions must have different variances, contradicting our

assumption.

Hence, case three applies, implying that f+
g+

is unimodal with unique interior mode

m. By concavity the mode is a maximum. 2

Proof of Lemma 5. We show that the convex transform order, Θf+ ≤c Θg+, is
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transitive. Note that

G−1
+ F+ (θ) = G−1

+ H+H
−1
+ F+ (θ) .

Since G−1
+ H+ (θ) and H−1

+ F+ (θ) are increasing functions, G−1
+ F+ (θ) is convex if

G−1
+ H+ (θ) and H−1

+ F+ (θ) are convex.

Recall that a Laplace distribution is a two-sided exponential distribution. van

Zwet (1964) shows that for H+ the exponential distribution, H−1
+ F+ (θ) is convex

for any distribution F+ with an increasing hazard rate. Since logconcavity of the

density implies an increasing hazard rate (Bagnoli and Bergstrom (2005)), H−1
+ F+ (θ)

is convex. Likewise, by van Zwet (1964), H−1
+ G+ (θ) is concave for any distributionG+

with a decreasing hazard rate. Again, logconvexity of the density implies a decreasing

hazard rate (Bagnoli and Bergstrom (2005)).

Hence, we need to show that H−1
+ G+ (θ) is concave if and only if G−1

+ H+ (θ) is

convex. We note that H−1
+ G+ (θ) is concave if and only if

g+(G−1
+ (u))

h+(H−1
+ (u))

is decreasing in

u ∈ [0, 1] while G−1
+ H+ (θ) is convex if and only if

h+(H−1
+ (u))

g+(G−1
+ (u))

is increasing in u ∈ [0, 1] .

Hence, H−1
+ F+ (θ) is convex if and only if H−1

+ G+ (θ) is concave. 2
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