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Abstract

We perform distributional comparative statics in a cheap talk model of

adaptation. Receiver borne adaptation costs drive a wedge between the objec-

tives of sender and receiver that is increasing in the magnitude of adaptation.

We allow for infinite supports with infinite disagreement at the extremes and

compare communication to simple delegation. We find that increases in risk

are detrimental to communication: Linear transformations of the state (scale)

change communication as well as delegation payoffs proportionally. By con-

trast, convex transformations of the state (shape) only reduce communication

payoffs and make delegation relatively more attractive. Our finding extends to

the comparison of distributions with thin (logconcave) versus heavy (logconvex)

tails.
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1 Introduction

This paper studies communication between an expert and a decision-maker. Whereas

the expert exclusively cares about scientific aspects, the decision-maker also faces a

political or firm-specific cost of adapting to the expert’s advice. The cost drives a

wedge between the expert’s and the decision-maker’s objectives that is increasing

in the magnitude of adaptation. As we allow for infinite supports, there is infinite

disagreement at the extreme states. An inadequate response to advice in an extreme

state is what we call a catastrophe in this paper. Our main focus is on the impact

of the distributional environment on communication, in particular, on the relative

likelihood of extreme states and extreme disagreement. We wonder how equilibrium

advice and equilibrium payoffs change when extremes states get more extreme and

more likely. We provide tools in terms of stochastic orders that allow us to rank

distributions with respect to their impact on equilibria and payoffs. We compare the

communication outcomes to the outcomes under the alternative decision protocol of

simple delegation. We find that delegation becomes relatively more attractive when

extreme conflicts become more likely.

To illustrate, consider the following examples of communication with catastrophic

outcomes: Experts suggested to adjust the drilling procedure in face of new evidence

prior to the oil drilling blowout on the Deepwater Horizon, BP however decided not

to change its procedures against expert advice. At the Challenger space shuttle

explosion engineers warned in vain about potential problems arising from the low

temperatures. Officials delayed the evacuation of the Ahr valley despite experts’

warnings of an extreme rise of the water level and a flooding of the Ahr valley.

Communication on the brink of these catastrophes was evidently unable to avert

them. Expert advice was not sufficiently taken into account. Is it better to delegate

the decision rights to the expert when extreme events are possible? Or when such

events are relatively likely?

To address our question, we introduce the following model. A decision maker

(receiver) seeks advice from a scientific expert (sender). The sender perfectly observes
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the state of the world and sends a cheap talk message (Crawford and Sobel (1982)) to

the receiver who then takes an action. The sender as well as the receiver care about the

right action being taken given the state. The decision maker, however, faces additional

concerns such as political or firm-specific costs of adaptation. Formally, sender and

receiver share a common payoff component aiming at minimizing a common quadratic

loss function. In addition to the common loss, the receiver faces a quadratic cost of

adaptation; costs are zero if the decision-maker takes the prior optimal action and

increase in the deviation of the implemented action from the prior optimal action.

As a consequence, the ideal choice functions of sender and receiver are linear with

different slopes and intersection at the prior optimal action. There is thus a state

dependent bias between sender and receiver that increases in the distance to the

expected state, the mean.

We first establish existence and essential uniqueness of cheap talk equilibria that

induce a given number of receiver actions up to a countable infinity (Proposition 1).

Logconcavity and symmetry of the density in addition to linearity of the bias ensure

that our environment features enough regularity to prove these results.

We then focus on linear transformations of the state variable. We fix the shape of

the distribution and scale the distribution up by increasing the variance. We consider

all symmetric distributions with logconcave densities, a rich class of distributions. As

an example, imagine the uniform distribution and making the support wider. We show

that the result is a linear spread of the equilibrium actions, resulting in a reduction

of expected utilities that is proportional to the increase in the variance (Lemma 1).

Since the payoff under delegation is also proportional to the variance (Lemma 2),

both payoffs are linearly decreasing in the variance. Hence such linear change never

implies a switch in the optimal decision-procedure from communication to delegation

(Corollary 1).

For the further comparison of distributions, we consider changes that keep mean

and variance constant. Since variance as a scale variable does not explain the choice

of institutions, this is a necessary step. It poses, however, considerable analytical

difficulties: standard stochastic comparisons such as a mean preserving spread, the
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convex order, and a standard monotonic likelihood ratio all imply an increase in

variance and are thus ruled out.

We next focus on convex transformations of the state variable. We fix the variance

and change the shape of the distribution by making the tail of the distribution heavier.

Formally, we compare symmetric distributions whose half-distributions (distributions

folded at the mean) are ordered in the convex transform order (van Zwet (1964)).

We show that the quantiles of the sender’s equilibrium marginal types are ordered

such that all quantiles are larger in the more convex/risky environment (Proposition

2). This result holds irrespective of whether the supports are bounded or unbounded.

The convex transform order is invariant to changes in scale, it orders equilibrium

strategies in the quantile space. Since the equilibrium strategies are scale-dependent,

we need to complement the convex transform order with a scale-dependent order

that allows us to order the equilibrium strategies in the state space to get sharper

predictions.

We first compare two distributions with bounded supports, such that the more

risky one has a larger support. While the half-distributions must violate the monotone

likelihood ratio property for such supports, it is still possible to obtain a modified

version of the order when equalizing the supports of the distributions. We obtain a

clear comparison this way: the equilibrium strategies form a mean-preserving spread

proportional to the size of the support (Proposition 3). While this comparison of

distributions explains everything when it comes to equilibria, the approach is not

useful for expected utilities because the magnitude of the scaling factor needed to

equalize the supports remains unexplained.

We then compare distributions without correcting for differences in supports, al-

lowing for bounded and unbounded supports. Our comparison is based on the uni-

form conditional variability order (Whitt (1985)). Distributions for which the half-

distributions are comparable by the uniform conditional variability order and the

convex transform order feature a unimodal likelihood ratio and their cdfs cross once

on each side of the prior mean: the less risky distribution is stochastically higher for

small deviations from the prior mean, while the more risky distribution is stochas-
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tically higher for large deviations from the prior mean. In combination with the

ordering of quantiles, we show that this implies that the distribution of receiver ac-

tions in the less risky environment is a mean preserving spread of the corresponding

actions in the more risky environment for sufficiently high marginal costs of adap-

tation (Corollary 2). Thus, there is more information transmission in the less risky

environment.

To quantify our comparison and the ‘sufficiently’ high marginal cost of adaptation,

we rely on dynamic programming methods. We derive a lower bound on the payoff

gains that result from communication (Proposition 5) under the assumption that the

distribution features a convex tail truncated expectation function – i.e., the conditional

expectation, conditional on a truncation to the tail, as function of the truncation point

is convex in the truncation point. This implies that the distribution becomes more

risky when truncated to the tail. The Gauss distribution is an example. The result

generalizes the closed form expression for the gain from communication for linear

tail truncated expectations, satisfied by the class of generalized Pareto distributions

(Deimen and Szalay (2019)).

We then use these bounds and closed form expressions to come back to explaining

the connection between risk and the choice between communication and delegation.

For the generalized Pareto distribution, we obtain a function – of the shape param-

eter of the distribution and the alignment of interest parameter – that characterizes

indifference between the two institutions (Proposition 6). In more risky environ-

ments there is more delegation at the optimum. Comparing the Gauss distribution

to the more risky Laplace distribution, we confirm that at the optimum there is more

communication in the less risky environment (Proposition 7).

Last but not least, we consider environments with infinite supports that feature

thin – sub-exponential – tails versus those that feature heavy – super-exponential

– tails. These environments feature half-distributions that are ordered in both the

convex transform order and the uniform conditional variability order. Consequently,

our result that communication suffers in risky environments extends (Proposition 8).

Vice versa, we show that the introduced partial stochastic orders capture the essential
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comparison of thinner versus heavier tails.

To summarize, linear transformations of random variables – changes in scale –

make everyone worse off but don’t trigger any changes in the optimal institutions. In

contrast, convex transformations of random variables decrease the gains under com-

munication and imply that delegation becomes more often optimal for the receiver. It

is somewhat surprising that the receiver prefers to delegate for an increased likelihood

of extreme states: from the receiver’s perspective, the sender strongly overreacts in

extreme states which imposes very high adaptation costs associated with delegation.

The problem with keeping authority, however, is that the sender knows that the re-

ceiver is reluctant to follow the advice: the receiver takes relatively more cautious

actions and therefore the expert exaggerates even more. As a consequence equilib-

rium partitions are coarsened and the quality of communication suffers substantially.

Delegation, in contrast, allows the receiver to commit to following the sender’s advice

and thus makes better use of the sender’s superior information.

The following well-documented example illustrates catastrophic decision making

based on communication in risky environments.1 The oil drilling industry in the Gulf

of Mexico faced a drastic change in the production environment between 1990 and

2009 moving from shallow to deep water. During this period the oil production from

deepwater wells increased from 4.4% to 80% of the total volume. (“Deepwater energy

exploration and production [...] involve risk for which neither industry nor government

has been adequately prepared [...].” p.9) British Petroleum (BP) was drilling for oil

from the rig Deepwater Horizon in the Macondo well in the Gulf of Mexico, when

in 2010 a blowout with catastrophic consequences occurred. BP, the owner of the

drilling rights, relied on a subcontractor, Transocean, to perform the drilling. BP

(the receiver) directed the work, Transocean (the sender) provided advice, the drilling

rig, and the crew operating it. BP and Transocean had agreed on a budget and a

timeline (p.2). Every adaptation away from the planned procedure was costly to

BP with costs increasing in the length of the resulting delay. As a consequence,

1The information provided here is based on the report of the National Comission on the BP
Deepwater Horizon oil spill and offshore drilling (2011).
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BP responded conservatively to proposed changes by Transocean and made decisions

that deviated from the recommended actions (p.125). The report states that “Most,

if not all, of the failures at Macondo can be traced back to underlying failures of

management and communication.” (p.122).2

We contribute to the literature on adaptation in organizations. Alonso et al. (2008)

and Rantakari (2008) investigate whether decision-authority should reside at the top

of a hierarchy or further down at the level of division-management. Even though these

papers consider multi-divisional organizations in which there are additional concerns

of coordination, the optimal allocation of authority essentially resolves a delegation

versus communication trade-off. These papers as our’s use the communication model

with linear state-dependent bias that was first studied by Melumad and Shibano

(1991). Imperfect profit sharing in their models and adaptation costs in our model

provide a micro foundation for such linear conflicts. Since the adaptation costs are

increasing in the size of the adjustment, the wedge between the expert’s and the

receiver’s objective is largest at the extremes of the support. This gives a natural

connection to catastrophic outcomes in extreme states and to such outcomes becoming

more likely if the state distribution features heavier tails. Our analysis can directly

be applied to situations in which the state can a priori only take positive values.

Moreover, it can be extended to the Crawford and Sobel (1982) model with a one-

sided bias. We leave this to future work.

More recent contributions to the adaptation literature include Rantakari (2013),

Dessein et al. (2022), and Liu and Migrow (2022). Liu and Migrow (2022) analyze

a model of disclosure with information acquisition. They show that the distribution

of an uncertainty parameter has an important impact on the optimal allocation of

decision-rights in their problem. Rantakari (2013) allows firms to choose the compen-

sation and the authority structure jointly. He finds that firms that operate in volatile

2A catastrophe in this paper corresponds to a catastrophically low payoff that is human made.
It stems from large disagreement in exceptional situations. There are other situations in which a
catastrophe is commonly anticipated – imagine a meteorite coming earth’s way. Such a situation
could arguably align interests perfectly. While this is an important and interesting situation, we
focus on human made catastrophes in this paper leaving other cases to future work.
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environments are characterized by decentralized decision making and a compensation

with focus on performance at the division level. Dessein et al. (2022) provide a the-

oretical model predicting that an environment that is more volatile locally results in

more decentralized decision making only when the need for coordination across sub-

units is low. We bring new tools to this literature which typically focuses on volatility

in the sense of an increase in the variance of a uniform state. Because we study the

impact of heavier tails on unbounded supports, instead of the usually assumed com-

pact state space, we need to build our model from scratch. We prove existence and

uniqueness of equilibria, analyze the role of the variance for all distributions with a

fixed shape, and study variations in the shape of distributions. We provide compar-

ative statics on the heaviness of the tails which have not been studied before in the

context of strategic communication.

Related cheap talk models with endogenous conflicts are Deimen and Szalay (2019)

and Antić and Persico (2020). Antić and Persico (2020) consider various ways in which

conflicts can arise endogenously, e.g. trading in a stock market prior to communication

in a firm. In Deimen and Szalay (2019) a sender acquires noisy signals about a

multidimensional state. Depending on the sender’s choice of information, conflicts

with the receiver arise. We show that communication is better than delegation in

a multidimensional elliptical generalized Pareto environment with heavy tails. Our

analysis here builds on our earlier work and provides extensions and generalizations

in various directions. We do not impose any functional form on the distribution but

use the generalized Pareto distribution as an illustrative example.

The essential new perspective that we bring to the comparison of communica-

tion and delegation is the impact of arbitrarily large conflicts. This complements

the focus of Dessein (2002), who is the first to study this comparison in the seminal

paper of Crawford and Sobel (1982). He shows that whenever interests are suffi-

ciently aligned such that influential communication is possible, the receiver prefers

to delegate. When the conflict between sender and receiver gets arbitrarily small,

Dessein (2002) shows that payoffs from simple delegation approach first-best payoffs
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faster than those arising from strategic communication.34 In our setup, increasing

the likelihood of extreme conflict has a detrimental impact on communication so that

delegation becomes relatively better.

Chen and Gordon (2015) also perform distributional comparative statics in strate-

gic information transmission. They show that information transmission is improved

when ideal choices are closer, which is satisfied when the distributions are ordered

by the monotone likelihood ratio order. We apply a scaled version of the monotone

likelihood ratio order to our analysis on bounded supports. The approach is useful

to obtain comparative statics results on equilibrium strategies. It can, however, not

be used for comparative statics of expected utilities, because of a scaling factor.

To explain the impact of heavier tails on infinite supports on expected utilities,

we go back to other stochastic orders. Whitt (1985)’s uniform conditional variability

order and van Zwet (1964)’s convex transform order are long known in statistics (see

also Shaked and Shanthikumar (2007)) but have not been studied in the literature on

strategic information transmission. In fact, with few exceptions, the economic theory

literature has paid little attention to the shape of distributions. Jewitt (2004) offers

an insightful overview of problems in which shape matters. He provides connections

among partial orders that describe shape, among them van Zwet’s convex transform

order. More recently, Di Tillio et al. (2021) show that shapes of distributions, mea-

sured by the convex transform order, have a decisive effect on whether winning bids

contain more or less information than all the bids in an auction.

The remainder of the paper is organized as follows. We present our formal model

in Section 2. Equilibria of the communication game are derived in Section 3. This

section also studies the impact of linear transformations on equilibria and payoffs.

In Section 4, we consider convex transformations. We combine stochastic orders to

derive equilibrium and payoff comparisons for different distributions. In Section 5, we

3Interestingly, an increase in variance – the support of the distribution – has a similar effect
than direct reductions of the sender’s bias (effectively, it is the ratio of bias over standard deviation
that determines the quality of communication and delegation). Therefore, changes in variance have
consequences for the delegation-communication choice in this model.

4See Dilmé (2022) for approximate characterizations of strategic information transmission equi-
libria with small biases.
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introduce a dynamic programing method to quantify the gain from communication.

We apply our findings to the generalized Pareto distribution and the Gauss distribu-

tion. An extension to a comparison of thin versus heavier tailed distributions is given

in Section 6. Section 7 concludes. All proofs are in the appendix.

2 Model

We consider a game with two players, a sender S and a receiver R. Sender and receiver

have preferences that reflect a common adaptation motive captured by quadratic

payoffs that depend on an action y ∈ R and on the realization θ of state of the world

Θ. For the sender,

uS (y, θ) = − (y − θ)2 .

The receiver faces an additional cost of adaptation c (y) = γ · y2, with γ > 0 such

that uR (y, θ, γ) = − (y − θ)2 − γ · y2. Defining a := 1
1+γ

, the ideal choice functions of

sender and receiver are yS (θ) = θ and yR (θ) = a · θ, respectively, where a ∈ (0, 1) as

γ > 0. Because of the additional cost, the receiver adapts more conservatively than

the sender. The parameter a measures the alignment of interests, with higher values

corresponding to more alignment.5 Since positive affine transformations of utility

functions describe the same preferences, we conveniently merge the receiver’s motives

into one loss function and write6

uR (y, θ, a) = − (y − a · θ)2 .

The state of the world Θ is a random variable with a common prior distribution

F with density f on an interval support S =
[
S,S

]
⊆ R. We assume that the density

is symmetric (S = −S), logconcave, and that the mean is zero and the variance σ2

is finite. Logconcavity ensures that optimal choices and expected utilities are well

5In terms of the literature, the sender’s bias is state dependent and equals (1− a) · θ.
6Note that uR(y, θ, γ) = − 1

a (y − a · θ)2−(1− a)·θ2, with γ = 1−a
a . The transformation obviously

affects levels of utility, but does not impact choices at any margin. The ideal choice functions of the
two specifications are the same, and, moreover, the specfications feature the same trade-offs when
choosing among institutions of decision-making.
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defined and that the tail of the distribution is relatively thin. In particular, we rule

out distributions with tails that are heavier than exponential (Laplace). Symmetry

of the density implies that we can write f (θ) = κ 1
σ
ψ
(

θ2

σ2

)
, where κ is a normaliz-

ing constant and ψ is a (density generator) function that captures the shape of the

distribution.7 Importantly, the density depends only on the standardized variable θ
σ
.

This representation allows us to vary the shape of the distribution and the variance

independently, to study different measures of risk.

The sender privately learns the realization of the state θ. The receiver can choose

to communicate with the sender (communication). In this case, a sender strategy

maps states into distributions over messages, MS : S → ∆M ; and a receiver strategy

maps messages into actions YR : M → R. Strict concavity of payoffs implies that a

restriction to pure receiver strategies is without loss of generality. As a simple alter-

native, the receiver can choose to delegate decision-making to the sender (delegation)

in which case a sender strategy maps states into actions, YS : S → R. We solve for

Bayes Nash equilibria of the game.

3 Equilibria and Payoffs

3.1 Equilibria of the communication game

As is standard in cheap talk games satisfying the single crossing condition, equilibria

are partitional. A partitional equilibrium is characterized by a sequence of critical

types, tn = (tni ), with tni−1 < tni and n relating to the number of induced actions.

Sender types strictly within an interval,
(
tni−1, t

n
i

)
, induce the same action; critical

types, tni , are indifferent between inducing the action in the interval below or the

action in the interval above. As we show in Proposition 1 below, for any finite number

of induced actions equilibria are symmetric in our model. For notational simplicity

we, therefore, take tni ≥ 0 and denote the critical types below zero by −tni for all i and

7Note that any symmetric one-dimensional density is elliptical (Cambanis et al. (1981)). The
particular representation of elliptical densities can be found, e.g., in Gómez et al. (2003). Many
distributions that are used in economics are elliptical with logconcave densities. Examples include
the uniform, the Gaussian, the Laplace, and many more.
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n. Receiving a message that indicates that θ ∈ [t, t), the receiver updates her belief

by forming the conditional expectation µ(t, t) = E
[
Θ|Θ ∈ [t, t)

]
. For equilibrium

critical types tn, we define

µn
i := E

[
Θ|Θ ∈

[
tni−1, t

n
i

)]
for i = 1, . . . , n and µn

n+1 := E [Θ|Θ ≥ tnn] . (1)

Thus, the receiver’s equilibrium action given a message indicating θ ∈
[
tni−1, t

n
i

)
is

a · µn
i = argmaxyE[uR(y, θ, a)|θ ∈

[
tni−1, t

n
i

)
]. The indifference conditions of critical

types that determine partitional equilibria are given by

tni − a · µn
i = a · µn

i+1 − tni , for i = 1, . . . , n. (2)

Symmetric equilibria come in two classes, depending on whether the total number

of induced actions is even or odd. In an equilibrium with an even number of actions,

type θ = 0 must be a critical type. We call this type of equilibrium an Even equilib-

rium, and the characterization uses tn0 = 0. If the total number of induced actions is

odd, then a symmetric interval around zero is part of the equilibrium. We call this an

Odd equilibrium. In this case, we omit tn0 from the construction. For an illustration

with n = 1, see Figure 1. The step function depicts the receiver’s actions.

Proposition 1 Assume a symmetric distribution with a logconcave density.

i) For all n, there exist an essentially unique Even equilibrium, that is symmetric

and induces 2 (n+ 1) actions, and an essentially unique Odd equilibrium, that is

symmetric and induces 2n+ 1 actions.

ii) Even and Odd equilibrium thresholds and actions converge for n→ ∞. The limits

define equilibria that induce infinitely many actions; we call them limit equilibrium.8

In particular, we have limn→∞ tn1 = 0 and limn→∞ tnn <∞.

Part i) of Proposition 1 proves the existence and uniqueness of partitional equi-

libria for arbitrary finite n. An analogous characterization of partitional equilibria is

8We do not rule out the existence of other infinite equilibria, we focus on limit equilibria through-
out the paper.
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Even:
y

θ
SS
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t20−t21 t21

yRaµ2
2

µ2
2

Odd:
y

θ
SS

yS

−t21 t21

yRaµ2
2

µ2
2

Limit:

SS

0

. . . . . .−t∞i t∞i

Figure 1: Partitional equilibria. Even and Odd equilibria for n = 1. In a limit
equilibrium, intervals around the prior mean 0 get arbitrarily small as n→ ∞.

given in Deimen and Szalay (2019) for the special case of the Laplace distribution.

Proposition 1 generalizes the result to all symmetric distributions with a logconcave

density. Note that the support can be bounded or unbounded. Logconcavity of the

distribution and alignment a ∈ (0, 1) together imply that the solution of a certain

forward difference equation is monotonic in the initial value, which we use to prove

uniqueness.9

Part ii) of the proposition proves that the limit as n→ ∞ also is an equilibrium.

A limit equilibrium features an accumulation point at zero and a finite highest critical

type, limn→∞ tnn < ∞, even if the support is unbounded. The reason is that for a

distribution with a logconcave density the mean residual life, E[θ − tnn|θ > tnn], is

decreasing towards zero as tnn → ∞. Equilibrium condition (2) implies a lower bound

on the distance between tnn and the induced action below, µn
n. Since this distance in

equilibrium must equal the distance between tnn and the induced action above, µn
n+1,

we get a lower bound for the mean residual life. Therefore, the highest critical type

must be finite to ensure that the mean residual life is sufficiently large. The insight

9For the proof, we take equilibria as a combination of a “forward solution” and a “closure con-
dition.”A forward solution that starts at t0 = 0, takes the length of the first interval, say t1 = τ ,
as given, and computes the “next” threshold, t2 (τ) , as a function of the preceding two, τ and t0.
Likewise, all following thresholds are constructed using their two predecessors. The closure condition
for an equilibrium with n positive thresholds requires that τ is such that type tnn (τ) satisfies the
indifference condition.
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that there is a finite highest critical type even if the support is unbounded is new to

the literature, which typically assumes a compact state space.

The partition of a limit equilibrium is illustrated in Figure 1, bottom panel. While

the partitional form of equilibria is known from the seminal work of Crawford and

Sobel (1982), the structure of the limit equilibrium is closest in spirit to Alonso et al.

(2008) and Rantakari (2008). Gordon (2010) offers the first systematic account of

the existence of infinite equilibria. We add to this literature by highlighting the

role of distributions and, in particular, the role of logconcavity for existence and

uniqueness. Logconcavity provides a microfoundation for regularity properties that

are often imposed in the literature.10

3.2 Communication gains

Define the random variable µn of conditional expectations on the discrete support

(±µn
i )

n+1
i=1 , with µn

i (given in equation (1)) derived from the equilibrium partition

(tni ). As is standard in cheap talk games with quadratic losses, the expected equi-

librium utility is a function of the expected residual variance after communication,

E[(σ2)n], where (σ2)n is the random variable of conditional variances conditional on

the equilibrium partition. The expected residual variance measures the expected un-

certainty left after communication has taken place. By the law of total variance, the

expected residual variance equals the prior variance minus the variance of the inferred

posterior means after communication,

E[(σ2)n] = σ2 − var (µn) .

The variance of the inferred posterior means var (µn) measures the expected infor-

mational gain from communication. Communication performs better if the expected

residual variance is smaller, or equivalently, if the variance of the inferred posterior

10Following Crawford and Sobel (1982), the literature invokes condition M to ensure uniqueness.
Logconcavity of the density and a receiver response with a slope less than one – not necessarily
constant – is a condition on the primitives of the model that ensures that condition M is satisfied.
Gordon (2010) assumes a regular receiver response. Our results are in line with his insightful
characterization. We provide conditions that make a receiver response regular.
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means is higher. For our comparative statics analysis, it turns out that the latter

object is analytically more convenient to work with.

3.3 Scale: linear transformations and equilibrium payoffs

As the next two lemmas show: our model is scalable. This means that equilibrium

strategies are linear in the standard deviation and that utilities are linear in the

variance.

Lemma 1 Fix the shape of the distribution ψ (·).

i) Equilibrium strategies (tni ) and a · (µn
i ) are linear in the standard deviation σ:

zn = (zni ) =
(

tni
σ

)
is the sequence of equilibrium critical types for the standardized

distribution with unit variance, and E
[
Θ|Θ ∈

[
tni−1, t

n
i

]]
= σE

[
Z|Z ∈

[
zni−1, z

n
i

]]
,

for Z := Θ
σ
.

ii) The receiver’s expected utility in any equilibrium of the communication game is a

linear function of the variance σ2:

EucomR (yR,Θ, a) = −a2
(
σ2 − var(µn)

)
= −a2 (1− ℓ(a, n))σ2,

for some function ℓ(a, n) that is independent of σ2.

The first statement follows from a change of variables to the standardized random

variable Z = Θ
σ
, which shows the equivalence of the original indifference conditions

to the ones with standardized critical types. The second statement uses the law of

total variance to write the receiver’s equilibrium expected utility as a function of

σ2 − var(µn) in place of the expected residual variance (as explained above). The

proof shows that the gain from communication var(µn) is linear in the variance.

This follows since the probability distribution over the equilibrium receiver actions is

not affected by the standard deviation and the conditional means are linear in the

standard deviation by part i).

As a simple alternative to communicating with the sender, we consider simple,
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unconstrained delegation to the sender.11 Under delegation, there is no loss of infor-

mation as the informed sender takes the action yS = θ. Sender and receiver, however,

disagree on the optimal action by (1 − a). This immediately implies the following

lemma.12

Lemma 2 The receiver’s expected utility under delegation is

EudelR (yS,Θ, a) = − (1− a)2 σ2.

Hence, expected utilities, whether arising from communication or from delegation,

are linearly decreasing in the variance. A higher variance, thus, results in lower

expected utilities under both institutions. A higher variance, however, by linearity,

never results in a change of the optimal choice of institution in our model.

Corollary 1 Fix the shape of the distribution ψ (·). The choice between delegation

and communication – in any equilibrium of the communication game – is independent

of the variance σ2.

This is a direct consequence of σ being a scale variable.13 By implication, if one

mode of decision-making is better than the other for some level of variance then it is

better for any level of variance. In other words, when comparing the optimal choice

of institution for two different distributions it is without loss of generality to focus on

distributions with the same variance:

Observation 1 Consider two distributions with shapes ψ1 (·) and ψ2 (·). The optimal

choice of institution is the same for both distributions if and only if it is the same for

both distributions where one of them is rescaled so that both have equal variances.

11By contrast, under optimal delegation, the receiver can constrain the choice set of the sender.
See, for example, Alonso and Matouschek (2008). Optimal delegation can replicate communication
outcomes and is therefore always weakly better. We show that even simple, unconstrained delegation
can strictly improve upon communication.

12Note that communication dominates delegation for a ≤ 1
2 . The reason is that even a babbling

equilibrium, which is the worst among all equilibria of the communication game, results in a payoff
of −a2σ2.

13Equivalent observations have been made in the literature in models in which the state follows a
uniform distribution. We extend the result to all scalable distributions. The shape of the distribution
does not matter, as long as it is kept fixed.
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Thus, if the aim is to identify factors that affect the choice of institution, we can

focus on distributions with the same variance. This motivates our focus on more

complicated comparisons of distributions.

4 Shape: convex transformations

By Observation 1, differences in variances across distributions are not the driving force

behind changes in the choice of institution. For this reason, we net out differences in

variances in what follows. Instead of considering risk in terms of linear transforma-

tions (scale), we now focus on risk in terms of convex transformations (shape). We

study the implications of spreads in the distributions that leave mean and variance

constant, but do increase higher (even) moments.14 In particular, we combine pairs

of different stochastic orders which all have the feature that they provide compar-

isons of the shape of the distributions with respect to how much mass and how much

variability lies in the tails. We consider stochastic orders that describe higher risk

and that make a difference in the choice of the optimal institution.

4.1 Convex transformations and equilibrium quantiles

Consider two distinct random variables Θf and Θg with distributions F and G and

densities f and g, respectively. Let Θf+ := |Θf | and Θg+ := |Θg| denote the absolute

values of these random variables (or equivalenty, by symmetry, the random variables

with distributions truncated to the positive halves of their supports) with densities

f+ and g+ and cdfs F+ and G+, respectively. By symmetry, it is without loss of

generality and analytically convenient to study the (one-sided) half-distributions F+

and G+. The economic intuition, however, is easier to convey by means of the two-

sided distributions F and G. We, therefore, go back and forth between the two

representations in what follows.

We assume throughout the paper that random variable Θg is more variable than

14We emphasize that the assumption of a constant variance rules out that the halves are stochas-
tically ordered (FOSD) and the distributions overall are higher in the convex order (SOSD).
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random variable Θf in the sense of nested supports, Sf ⊆ Sg. For bounded supports,

we assume Sf ⊂ Sg.

Moreover, we assume throughout the paper that Θg+ results from a convex trans-

formation of Θf+ in the following sense:

Definition 1 (van Zwet (1964)) Θf+ is smaller than Θg+ in the convex transform

order, Θf+ ≤c Θg+ , if

G−1
+ F+ (θ) is convex in θ on the support of F+. (CTO+)

Intuitively, distribution G+ is more skewed than F+ towards high realizations on

the support. Because of the common origin at θ = 0, convexity of G−1
+ F+ (·) , and

Sf ≤ Sg, there exists a θ̂ such that G−1
+ F+(θ̂) = θ̂. This implies that 1 − G+ (θ) <

1 − F+ (θ) for θ ∈ (0, θ̂) and 1 − G+ (θ) > 1 − F+ (θ) for θ ∈ (θ̂,Sg). Thus F+ is

stochastically higher than G+ below θ̂ and vice versa above θ̂. By symmetry, G has

more mass in the tails than distribution F. Formally, if Θf+ and Θg+ satisfy CTO+,

then Θf is smaller than Θg in van Zwet’s S-order, Θf ≤S Θg (van Zwet (1964)), which

implies a higher kurtosis.

The convex transform order orders distributions independently of location and

scale (van Zwet (1964)). Therefore, rescaling distributions with bounded supports

to a common support preserves the ranking of the distributions according to CTO+.

The intersection point θ̂, however, depends on scale.

Proposition 2 Consider two distributions F , G such that CTO+ holds. Then the

quantiles at the equilibrium thresholds under the respective distributions, tni,f , t
n
i,g, sat-

isfy F+

(
tni,f
)
≤ G+

(
tni,g
)
for all n.

The proof of the proposition uses convexity and Jensen’s inequality. It shows that

under CTO+ the quantiles at the equilibrium thresholds are ordered. That is, the

quantile at the ith threshold under G+ is higher than the quantile at the ith threshold

under F+. Note that the ordering only refers to the quantiles at the thresholds but

not to the thresholds themselves. The quantiles at the thresholds determine the
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equilibrium probability distribution over the receiver’s actions. Hence, the receiver

is more likely to take relatively higher indexed actions under F+ than under G+. For

an illustration, see Figure 2 left panel.

4.2 The effects of shape and scale on equilibrium strategies

In this subsection, we assume that the supports are bounded. We first scale the

random variables to a common support, which is useful for a meaningful comparison

of equilibrium strategies. We then consider a stochastic order of distributions on

the common support.15 We provide comparative statics of equilibria and show that

standard stochastic comparisons cannot be used to compare payoffs.

Consider the scaled random variable Θf̂+
= Sg

Sf
·Θf+ , with density f̂+ and cdf F̂+

on support θ ∈
[
0,Sg

]
.

Definition 2 The distributions f̂+ and g+ – scaled to the same support – satisfy the

monotone likelihood ratio property, if

f̂+ (θ)

g+ (θ)
is increasing in θ. (MLRP+̂)

Condition MLRP+̂ implies that the distributions are ordered in the standard

stochastic order (FOSD) on the positive half of the support, thus θ̂ = Sg. It says that,

scaled to the same support, higher realizations of θ are relatively more likely under

distribution F̂+ than under distribution G+. On the entire support, the likelihood

ratio f̂(θ)
g(θ)

is U-shaped so that more extreme realizations are relatively more likely

under F̂+ than under G+. This has the following impact on equilibrium choices.

Proposition 3 Consider two distributions F , G such that MLRP+̂ holds. Then the

equilibrium critical types and induced actions satisfy
tni,f
Sf

>
tni,g
Sg

and
µn
i,f

Sf
>

µn
i,g

Sg
for all

i ≤ n.

15For unbounded supports, considered in the next subsection, we will introduce another order
consistent with the one provided here.
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Figure 2: Proposition 2 left panel and Proposition 3 right panel, for uniform distri-
bution F (black dotted) and triangular distribution G (blue dashed).

If the distributions satisfy MLRP+̂, then the ith threshold type and the ith induced

action by the receiver are farther away from the prior mean under F̂+ than under G+.

Since equilibrium actions are linear in scale, we can scale F̂+ back to the original

support to obtain the comparison relative to the lengths of the supports of F+ and

G+.
16 For an illustration, see Figure 2 right panel.

Corollary 2 Suppose F,G satisfy CTO+ and MLRP+̂, then the distribution of
µn
f

Sf
is

a mean-preserving spread of the distribution of
µn
g

Sg
, implying varf

(
µn
f

Sf

)
> varg

(
µn
g

Sg

)
.

If both conditions CTO+ and MLRP+̂ hold together, then the distribution of

receiver equilibrium actions under F corrected for the length of the support is a mean-

preserving spread of the distribution of receiver equilibrium actions under G. As is

well known, if one distribution is a mean-preserving spread of another distribution,

then the former has a higher variance. The reverse is not true. Hence, to conclude

that varf

(
µn
f

Sf

)
> varg

(
µn
g

Sg

)
it is sufficient but not necessary that the distribution of

µn
f

Sf
is a mean-preserving spread of the distribution of

µn
g

Sg
.

Propositions 2 and 3 deliver clear predictions about the comparative statics of

equilibria. For the ‘less risky’ distribution F , (i) the probability of the receiver tak-

ing higher indexed actions is higher (Proposition 2) and (ii) the scaled equilibrium

16That MLRP orders equilibrium actions is known from Chen and Gordon (2015). We add the
aspect of scale.
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threshold types and induced actions are farther away from the prior mean (Proposi-

tion 3). The scale correction inherent in MLRP+̂, however, is not very useful for the

comparative statics of the expected utilities. The reason is that the ordering of the

gains from communication varf
(
µn
f

)
>
(

Sf

Sg

)2
varg

(
µn
g

)
may result from

Sf

Sg
< 1 being

sufficiently small, instead of from the desired conclusion that varf
(
µn
f

)
> varg

(
µn
g

)
.

4.3 The effect of shape on equilibrium gains

Our next results allow us to compare distributions with respect to their gain from

communication – irrespective of supports. We drop condition MLRP+̂ and impose

instead a ranking of distributions that also holds for unbounded supports. We assume

that random variable Θg+ is uniformly more variable than random variable Θf+ in

the following sense.

Definition 3 (Whitt (1985)) Θf+ is smaller than Θg+ in the uniform conditional

variability order, Θf+ ≤uv Θg+ , if the support of Θf+ is a subset of the support of Θg+ ,

Sf+ ⊆ Sg+, and the ratio

f+ (θ)

g+ (θ)
is unimodal over Sg+, where the mode is a supremum, (UCV+)

but Θf+ and Θg+ are not ordered by the standard stochastic order.

Figure 3 illustrates. The top panel depicts two densities f, g where g features a

relatively higher likelihood of extreme outcomes than f . The bottom panel depicts

the likelihood ratio, f(θ)
g(θ)

. On the positive half of the support, f+(θ)
g+(θ)

is unimodal with

interior mode m.

As we show in the proof of Proposition 4 below, Θf+ ≤uv Θg+ implies (again) that

there exists some θ̂ such that 1−G+ (θ) < 1− F+ (θ) for θ ∈ (0, θ̂) and 1−G+ (θ) >

1 − F+ (θ) for θ ∈ (θ̂,Sg). Thus, UCV+ implies, consistently with CTO+ that the

distribution of Θg has more mass in the tails than the distribution of Θf .

Proposition 4 Suppose that the densities f and g are logconcave and induce the

same variance σ2. Let f+
g+

satisfy UCV+ and let F+ and G+ satisfy CTO+. Then,
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Figure 3: Top: distributions f , g satisfying UCV+. Bottom: the likelihood ratio f
g
.

there exists a′ ∈ (0, 1), defined in the appendix, such that for a ≤ a′, the distribution

of µn
f is a strict mean preserving spread of the distribution of µn

g , implying that

varf (µ
n
f ) > varg(µ

n
g ).

Condition CTO+ implies that for any alignment a ∈ (0, 1) the equilibrium prob-

ability distribution over the receiver’s actions for density f puts more weight on the

more extreme actions than g. For a relatively low, all thresholds and receiver actions

are relatively close to the prior mean. Due to UCV+ this implies that the receiver’s

equilibrium actions are all farther away from zero under distribution f than under

distribution g. The two effects – the ranking of quantiles and actions – taken together

imply that the distribution of µn
f is a mean preserving spread of the distribution of

µn
g .

Note that our assumption in Proposition 4 on the level of a is sufficient but not

necessary. In particular, a ≤ a′ is sufficient, not necessary to obtain a mean preserving

spread, and a mean preserving spread is sufficient, not necessary to obtain a ranking

of variances. Increasing a above a′ will eventually result in distributions that are no

longer comparable in terms of mean preserving spreads. Our result, however, only

requires the weaker condition of a ranking of the variances. Since the gains from
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communication are continuous in a, the ranking of variances is preserved for a larger

set of alignment parameters beyond a′:

Corollary 3 Suppose that the densities f and g are logconcave and induce the same

variance σ2. Let f+
g+

satisfy UCV+ and let F+ and G+ satisfy CTO+. Then, there

exists a′′ > a′ such that for a ≤ a′′, varf (µ
n
f ) > varg(µ

n
g ).

Under our assumptions, there is more information transmission and the expected

utilities are higher under f than under g. For both distributions, a higher marginal

cost of adaptation pushes all choices closer to the prior mean; there is less adaptation.

However, the less risky distribution is more resistant against this force, because its

half-distribution is stochastically higher close to zero. We conclude that a higher

weight in the tails is detrimental to the quality of information transmission, provided

that interests are ‘sufficiently misaligned.’

5 Delegation versus communication

In this section, we quantify the effects derived in the previous analysis. We provide

some meaning to the term ‘sufficiently misaligned’ interests used in Proposition 4

and Corollary 3. Moreover, we link our findings back to the comparison of delegation

versus communication. We show that for a given alignment of preferences, a more

risky distribution can change the optimal way of decision-making from communication

to delegation. All distributions we compare in this section are ranked according to

CTO+ and UCV+.

To quantify the effects and to derive a formula for the gain from communication,

we rely on a ‘dynamic programming’ procedure as our technical tool. The slope of

the tail-truncated expectation function ϕ(t) := E [Θ|Θ ≥ t] for t ≥ 0, is a crucial

determinant of this value. The case of a linear tail-truncated expectation, which is

satisfied by the two-sided generalized Pareto distribution is particularly structured.

We treat this in the next subsection. A second class of interest is the class of convex

tail-truncated expectation functions. The Gauss distribution is a prominent case with

this property, which we treat thereafter.
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The gain from communication can be quantified as follows.

Proposition 5 Suppose that ϕ(t) := E [Θ|Θ ≥ t] is convex in t ≥ 0. Then the vari-

ance of µn in a limit equilibrium satisfies

var(µ∞) ≥ 2

2− a · ϕ′(0)
· ϕ(0)2.

If ϕ(t) is linear in t ≥ 0, then the condition is satisfied with equality.

The (lower bound on) the variance of µn in a limit equilibrium is a product of two

terms. The factor ϕ(0)2 = E [Θ|Θ ≥ 0]2 measures the amount of information that is

transmitted by binary communication, when dividing the state space into positive and

negative realizations. The factor 2
2−a·ϕ′(0)

captures (a lower bound on) the additional

information contained by dividing each half into a countable infinity of subintervals.

The latter term depends on the slope of the tail-truncated expectation, ϕ′(t). The

slope is constant for a linear tail-truncated expectation function which therefore yields

a closed form solution. The slope is increasing for convex tail-truncated expectations.

We thus obtain a lower bound on the variance of equilibrium actions by using the

minimal slope of the conditional expectation – which amounts to the slope at zero,

ϕ′(0).

The computation is based on a procedure which is akin to dynamic program-

ming (for a = 1, i.e., identical sender and receiver preferences, it would be dynamic

programming in the literal sense). In particular, we compute the expected squared

deviation from ϕ(0) conditional on the last interval, then conditional on the last two

intervals, and so on, proceeding towards zero. In each step, we can simplify the ex-

pression using the indifference condition of the threshold types, the law of iterated

expectations – which links expectations over subintervals to expectations truncated

to the tail of the distribution – and the special form of tail-truncated expectations. If

the tail-truncated expectation function is linear in the truncation point, we can carry

an exact functional form backwards towards zero and in the limit obtain a closed

form expression. The procedure was developed in (Deimen and Szalay (2019)). Here,

we generalize the procedure to the case of convex tail-truncated expectations. For
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this case, we show that at each step of the procedure, we obtain a lower bound on the

expected squared deviation from ϕ(0). Thus in the limit, we derive a lower bound on

the expected gain from communication in a limit equilibrium.

Note that our quantitative assessment of communication gains via ‘dynamic pro-

gramming’ applies to any distribution that becomes relatively more variable towards

the tail of its distribution in the sense of a globally increasing residual coefficient of

variation (Gupta and Kirmani (2000)).17

5.1 The linear case: generalized Pareto distribution

The tail-truncated expectation ϕ(t) = E [Θ|Θ ≥ t] is linear in t ≥ 0 if the state is

distributed according to a two-sided generalized Pareto distribution. For this class,

the density is

f (θ; δ, s) =
1

2s

(
1 + δ

|θ|
s

)− 1
δ
−1

for θ ∈
[s
δ
,−s

δ

]
, (GP)

where s ∈ (0,∞) is a scale parameter and δ ∈ [−1, 0] is a shape parameter.18 The

variance of the distribution is σ2 (s, δ) = 2s2

(1−δ)(1−2δ)
.

The shape parameter δ and the scale parameter s can be changed independently.

Increases in scale s make the support, [ s
δ
,− s

δ
], wider and move equilibrium actions

further way from the mean. Increases in shape δ move equilibrium actions closer to

the mean, when controlling for the support. It can be shown that the distributions

in this generalized Pareto class satisfy the definitions CTO+, MLRP+̂, and UCV+.

The class is rich as it nests many well-known distributions. In particular, the case

δ = −1 is the uniform distribution, δ = −1
2
is the triangular distribution, and the

limit case δ = 0 is the Laplace distribution. For an illustration of these examples, see

17Gupta and Kirmani (2000) show that the residual coefficient of variation, i.e., the ratio of residual
variance and mean residual life squared, increases in the truncation point if ϕ(t) is convex in t.

18The distribution is constructed from the well-known one-sided generalized Pareto by reflecting
at zero. The location parameter is set to zero, to ensure that the mean is zero. The distribution
is defined more generally for shape parameters δ ∈ (−∞,∞) , but we restrict attention to the
subset that features logconcave tails. We treat the case δ ≥ 0 in Deimen and Szalay (2019); these
distributions have logconvex tails and an infinite support.
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Figure 4.

f (θ)
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S−1 S−1S− 1
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2

Figure 4: The uniform distribution (solid red, δ = −1) and the triangular distributions
(dashed blue, δ = −1

2
) and the Laplace distribution (dotted black, δ = 0) all with

variance σ2 = 1.

By Proposition 5, for the generalized Pareto environment the expected utilities

arising from communication can be stated in closed form.19

Lemma 3 For the two-sided generalized Pareto distribution with shape δ ∈ [−1, 0]

and scale s2 = σ2 (1−δ)(1−2δ)
2

, we have that ϕ′(0) = 1
1−δ

. Hence, in a limit equilibrium,

we have

var(µ∞) =
2

2− a
1−δ

ϕ(0)2 =
2− 1

1−δ

2− a
1−δ

σ2. (3)

The second equality in (3) obtains from noting that ϕ(0) = s
1−δ

and using the

functional form of the variance. Naturally, var(µn) ≤ var (µ∞) ≤ var (Θ). For

a → 0, the value var(µ∞) approaches the value of binary communication. Note

that for given alignment a ∈ (0, 1), the value var(µ∞) is decreasing in δ.20 A larger

shape parameter reduces the value of communication, less information is transmitted

in equilibrium. Thus, within the generalized Pareto class, the shape parameter has

a strictly negative impact on the gain from communication for any value of a < 1.

In the sense of Corollary 3, for this class, the condition of ‘sufficiently misaligned’

interests is always satisfied, i.e., a′′ = 1, and there is no restriction.

19In Deimen and Szalay (2019), distributions with a linear tail-truncated expectation are derived
from first principles as the solution to a differential equation. In that formulation, we obtain a
solution that involves variance and the slope of the tail-truncated expectation. Here, we observe
that the generalized Pareto class can be obtained as a re-parametrization – in terms of shape and
scale – of the distributions with linear tail-truncated expectations.

20For a = 1, the value of partitional communication reaches the upper bound of fully revealing
communication. For a = 0, the receiver’s action equals zero for any sender strategy.
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It is now straightforward to investigate the effect of the shape of the distribution

on the optimal choice of institution – communication versus delegation.

Proposition 6 Suppose the receiver can choose between communication and dele-

gation. Then, delegation is better than communication – in any equilibrium of the

communication game – if δ ≥ 2−3a
2−2a

. Communication in a limit equilibrium is better

than delegation if δ ≤ 2−3a
2−2a

.

a

δ−1 0

1

1
2

Communication

Delegation

Figure 5: Delegation versus communication. On the horizontal axis, the shape pa-
rameter δ increases from −1 (uniform distribution) to 0 (Laplace distribution); on
the vertical axis, the level of alignment a increases from 1

2
to 1.

While the performance of delegation depends only on the variance of the envi-

ronment, the performance of communication depends in addition on the shape of the

distribution. The fraction of information that is transmitted in a limit equilibrium,
2− 1

1−δ

2− a
1−δ

, is smaller in environments that feature more shape, i.e., larger δ. We depict

the comparison in Figure 5.

Consistent with the literature, delegation dominates communication when the in-

terests are relatively well aligned and the receiver is quite responsive to the sender’s

advice, a ≥ 2−2δ
3−2δ

.21 The comparison in terms of shape adds a new dimension to the

literature. For a ∈
(
2
3
, 4
5

)
, for a distribution with a low shape parameter communi-

cation is optimal but for a distribution with a higher shape parameter delegation is

optimal. In other words, an increase of the mass in the tail of the distribution induces

a change in the mode of decision-making from communication to delegation in the

named range.

21See, for example, Alonso et al. (2008) and Rantakari (2008) who study a uniform distribution,
i.e., δ = −1. See also Dessein (2002).
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5.2 A convex case: Gauss versus Laplace

A leading example within the class of distributions with convex tail-truncated expec-

tations is the Gauss distribution (see Sampford (1953)).

Lemma 4 For the Gauss distribution, ϕ′(0) = 2
π
. The gain from communication in

a limit equilibrium is bounded from below,

var(µ∞) ≥ 2

2− a 2
π

ϕ(0)2 =
2

π − a
σ2. (4)

By Proposition 5, for the Gauss distribution the expected utilities arising from

communication can be bounded from below. The lower bound on the variance of

equilibrium actions uses the minimal slope of the truncated expectation – which

amounts to the slope at the origin, ϕ′(0) = 2
π
. The equality in (4) results from the

fact that for the Gauss distribution ϕ(0)2 = 2
π
σ2.

With this at hand, we can compare delegation to communication under the Gauss

distribution and under the Laplace distribution. The Laplace distribution has the

largest shape parameter δ = 0 in the class of logconcave generalized Pareto distribu-

tions. In this sense, this is the most risky distribution in this class.

Note that the Gauss and the Laplace distributions are ordered in the convex trans-

form order and that they satisfy the uniform conditional variability order (see Lemma

A.8 in the appendix). Interests are sufficiently misaligned in the sense of Corollary 3

if a ≤ a′′ = 0.858. The lower bound on the value of communication under the Gauss

distribution outperforms the exact value of communication under the Laplace distri-

bution. Using these values, we identify situations in which communication is optimal

for the Gauss distribution, while delegation is optimal for the Laplace distribution.

Proposition 7 If communication is preferred over delegation for the Laplace distri-

bution, then communication is also preferred over delegation for the Gauss distribu-

tion. Conversely, there is a nonempty set of preference alignment parameters a for

which delegation is preferred for the Laplace distribution whereas communication is

preferred for the Gauss distribution.
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To rephrase the proposition, in the particular case at hand, there is (again) more

delegation compared to communication when the environment features more mass in

the tails in the sense of CTO+ and UCV+.

To understand the proposition more formally, recall that the locus of indifference

points between communication and delegation for the Laplace distribution can be

computed in closed form. In particular, communication is optimal for the Laplace

for any a ≤ 2
3
. Recalling that the lower bound on the value of communication under

the Gauss distribution outperforms the value from communication under the Laplace

distribution for a ≤ 0.858 implies the first statement. To prove the converse state-

ment, we show that the lower bound on the value of communication under the Gauss

distribution trumps delegation for any a ≤ 0.702. Since already for a > 2
3
, delegation

is preferred for the Laplace, there is a set of preference alignment parameter values,

a ∈ (0.667, 0.702), for which communication performs better for a Gauss distribution,

while delegation is better for the more risky Laplace distribution.

The Gauss distribution is one example. Similar results can be obtained for any

distribution with a logconcave density and a convex tail-truncated expectation func-

tion.

6 Thin versus heavy tails

We have so far confined our attention to distributions with a logconcave density.

These feature relatively thin tails – logconcave densities have thinner tails than the

Laplace distribution, which features loglinear tails. We have used this restriction in

Proposition 1 to prove uniqueness and existence. We now drop the assumption to

discuss distributions with heavy tails – tails that are heavier than those of the Laplace

distribution. Note that we keep the assumption that the variance is finite, and thus

still impose a restriction that the tails cannot be too heavy.

We note that dropping logconcavity does not imply that equilibria necessarily

cease to exist, nor that there are necessarily multiple equilibria inducing a given

number of receiver actions. It may still be the case that Condition M holds (Craw-
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ford and Sobel (1982)) or that the receiver responses are regular (Gordon (2010)).

Moreover, even if there are multiple equilibria, we may still compare the performance

of communication arising from symmetric equilibria. We state our next result in this

more conservative interpretation.

Proposition 8 Consider two symmetric distributions F,G with support on R and

with the same finite variance σ2. Suppose that the density f+ is logconcave and the

density g+ is logconvex. Then, f+
g+

satisfies UCV+ and F+ and G+ satisfy CTO+.

Moreover, in any informative symmetric equilibrium, there exists a′ ∈ (0, 1), such that

for a ≤ a′, the distribution of µn
f is a strict mean preserving spread of the distribution

of µn
g , implying that

varf (µ
n
f ) > varg(µ

n
g ).

The payoffs of the communication games are thus higher for distributions with log-

concave relative to logconvex densities. Note that there always exists an informative

symmetric equilibrium, since binary communication is always feasible.

To prove the proposition, we only need to apply Proposition 4. Hence, we aim

at showing that the conditions stated in the proposition imply that the distributions

are ranked according to CTO+ and UCV+. We first consider the UCV+ order and

relate it to the well-known concept of relative logconcavity.

Definition 4 (Whitt (1985)) If f+
g+

is logconcave then f+ is said to be logconcave

relative to g+.

Lemma 5 Consider two symmetric distributions with the same variance and with

densities f, g on R such that f+
g+

is logconcave. Then f+
g+

satisfies UCV+, i.e., g+ (θ)

is uniformly more variable than f+ (θ).22

For example, note that f+
g+

is logconcave if f+ is logconcave and g+ is logconvex.

As a consequence, two distributions satisfying the assumptions in Proposition 8 are

ranked according to UCV+.

22From Shaked and Shanthikumar (2007) Theorem 3.A.54, it is known that relative logconcavity
plus the densities crossing twice implies the uniform variability order. In contrast, we show that the
uniform variability order arises from relative logconcavity plus the distributions having the same
variance.
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We next, consider CTO+.

Lemma 6 Consider two symmetric densities f, g on R. If f+ is logconcave and g+

is logconvex, then F+ and G+ satisfy CTO+, i.e., G−1
+ F+ (θ) is convex.

Thus the conditions of Proposition 4 are satisfied and we obtain a mean-variance-

preserving spread in terms of the underlying state distributions. By the now familiar

arguments, this induces a mean-preserving spread in the distributions of receiver

actions.

In closing, we note that we have picked the most focal point of comparison: the

loglinear (Laplace) distribution which separates logconcave from logconvex distribu-

tions. We can pick any other distribution as a point of reference, for example the

Gauss distribution: distributions that are logconcave relative to the Gauss distribu-

tion are called strongly logconcave (Wellner (2013)). In a similar vein, we can consider

the distributions that precede or are higher than the Gauss distribution in the convex

transform order. Our insights carry over to these comparisons.

All of our results indicate that communication tends to perform poorly in envi-

ronments with heavier tails compared to environments with thinner tails.

7 Conclusions

In this paper, we study the impact of risk through comparative statics of distribu-

tions on the performance of communication. In particular, we are interested in the

likelihood of extreme events which is tied to the likelihood of extreme disagreement

in our model. We compare the payoffs under communication with those under sim-

ple delegation. We first look at an increase of risk through linear transformations

of the state random variable. This amounts to changes in variance. We find that

an increase of the variance scales the payoffs under communication as well as under

delegation down. As a consequence, this can never imply a change of the optimal

decision protocol.

We then consider an increase of risk through convex transformations of the state

random variable. The convex transform order ranks equilibria in the quantile space.
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In combination with a scaled version of the monotone likelihood ratio order, we rank

the payoff gains from communication for distributions with bounded supports. In

combination with the uniform conditional variability order, we rank the payoff gains

from communication for distributions with any support, assuming adaptation costs

of some size for the receiver. We find that increasing risk in terms of convex trans-

formations decreases the gains under communication. These transformations do not

impact the delegation payoff, hence delegation relative to communication becomes

more often optimal.

We confirm our finding that an increase in risk is detrimental for communication

when comparing distributions with thin tails with distributions with heavier tails.

When extreme events become more likely, communication payoffs suffer.

Catastrophes in this paper correspond to extremely low payoffs arising from inade-

quate decisions. Such catastrophes are human made and stem from large disagreement

in situations in which there is a good chance of an extreme state to realize. There are

other situations. Suppose a catastrophe is commonly anticipated, such as a hurricane

is about to hit. Arguably, such a situation can perfectly align the interests. While

this is a relevant scenario, we focus on human made catastrophes in this paper leaving

other cases to future work.
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A Appendix

Definition A.1 The forward equation is recursively defined as solutions ti+1(ti−1, ti)

to the indifference conditions of types ti. We denote an arbitrary initial value of t1

by τ . In particular, for i = 1 we have t2(0, τ) as solution to

2τ − aE [Θ|Θ ∈ [0, τ ]]− aE [Θ|Θ ∈ [τ , t2(0, τ)]] = 0, (5)

for i > 1 we have ti+1(ti−1, ti) as solutions to

2ti − aE [Θ|Θ ∈ [ti−1, ti]]− aE [Θ|Θ ∈ [ti, ti+1(ti−1, ti)]] = 0. (6)

Lemma A.1 (Szalay (2012)) (Strict) Logconcavity of the distribution implies that

∂

∂ti−1

E [Θ|Θ ∈ [ti−1, ti]] +
∂

∂ti
E [Θ|Θ ∈ [ti−1, ti]] ≤ (<)1.

Lemma A.2 Consider the forward equation. Logconcavity of the distribution and

a < 1 implies that for all i = 1, . . . , n− 1

dti+1

dti
=

(
2− a ∂

∂ti
E [Θ|Θ ∈ [ti−1, ti]]− a ∂

∂ti
E [Θ|Θ ∈ [ti, ti+1]]

)
a ∂
∂ti+1

E [Θ|Θ ∈ [ti, ti+1]]
> 1.

Proof of Lemma A.2. Consider the forward equation for t2. The value t2 (0, τ) is

the unique solution to (5). Totally differentiating (5) we find

dt2
dτ

=

(
2− a ∂

∂τ
E [Θ|Θ ∈ [0, τ ]]− a ∂

∂τ
E [Θ|Θ ∈ [τ , t2]]

)
a ∂
∂t2

E [Θ|Θ ∈ [τ , t2]]
> 1,

where the inequality follows from Lemma A.1:

2− a
∂

∂τ
E [Θ|Θ ∈ [0, τ ]] > 1 > a

∂

∂τ
E [Θ|Θ ∈ [τ , t2]] + a

∂

∂t2
E [Θ|Θ ∈ [τ , t2]] .

Next, consider arbitrary i = 1, . . . , n − 1. The sender’s solution to the forward
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equation for ti is given by (6). Totally differentiating (6) yields(
2− a

∂

∂ti
E [Θ|Θ ∈ [ti−1, ti]]− a

∂

∂ti
E [Θ|Θ ∈ [ti, ti+1]]− a

∂

∂ti−1

E [Θ|Θ ∈ [ti−1, ti]]
dti−1

dti

)
dti

= a
∂

∂ti+1

E [Θ|Θ ∈ [ti, ti+1]] dti+1.

Suppose as an inductive hypothesis that dti
dti−1

> 1, so dti−1

dti
< 1. Rearranging, we get

dti+1

dti
=

(
2− a ∂

∂ti
E [Θ|Θ ∈ [ti−1, ti]]− a ∂

∂ti
E [Θ|Θ ∈ [ti, ti+1]]− a ∂

∂ti−1
E [Θ|Θ ∈ [ti−1, ti]]

dti−1

dti

)
a ∂
∂ti+1

E [Θ|Θ ∈ [ti, ti+1]]

> 1,

which obtains by the inductive hypothesis and Lemma A.1:

2− a
∂

∂ti
E [Θ|Θ ∈ [ti−1, ti]]− a

∂

∂ti−1

E [Θ|Θ ∈ [ti−1, ti]]
dti−1

dti

> 2− a
∂

∂ti
E [Θ|Θ ∈ [ti−1, ti]]− a

∂

∂ti−1

E [Θ|Θ ∈ [ti−1, ti]]

> 1 > a
∂

∂ti
E [Θ|Θ ∈ [ti, ti+1]] + a

∂

∂ti+1

E [Θ|Θ ∈ [ti, ti+1]] .

2

Lemma A.3 The last equilibrium threshold tnn is bounded from above for all n and

limn→∞ tnn <∞.

Proof of Lemma A.3. The statement is trivial for S <∞.

Consider the closure condition and define

∆n (τ) ≡ 2tn (τ)− aE [θ| θ ∈ [tn−1 (τ) , tn (τ)]]− aE [θ| θ ≥ tn (τ)] .

Now, ∆n (τ) = 0, for τ = tn1 . We have

∆n (t
n
1 ) = 2tnn − aE

[
θ| θ ∈

[
tnn−1, t

n
n

]]
− aE [θ| θ ≥ tnn] ≥ 2 (tnn − aE [θ| θ ≥ tnn]) ,

which follows from −aE
[
θ| θ ∈

[
tnn−1, t

n
n

]]
≥ −aE [θ| θ ≥ tnn]. For a logconcave dis-
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tribution, t − aE [θ| θ ≥ t] is negative for t = 0, increasing in t, and goes to ∞ for

t→ ∞. Therefore, limn→∞ tnn <∞ and the sequence tnn is bounded above. 2

Proof of Proposition 1. The proof is analogous to the proof of Proposition

1 in Deimen and Szalay (2019) which only considers the Laplace distribution, and

therefore omitted. Instead of using the functional form of the Laplace distribution one

can apply properties of logconcave densities to show the statements. These properties

are summarized in Lemma A.1 and Lemma A.2. Moreover, Lemma A.3 shows the

existence of a bound. For a detailed version of the proof, we refer the interested

reader to the working paper Deimen and Szalay (2023). 2

Proof of Lemma 1. Since E [µn] = E [θ] = 0 and E [µnΘ] = EE [µnΘ|Θ ∈ [θi, θi+1]] =

E [(µn)2] = var(µn), we have

EucomR (yR,Θ, a) = −E
[
(aµn − aΘ)2

]
= −a2E

[
(µn)2 − 2µnΘ+Θ2

]
= a2

(
var(µn)− σ2

)
.

We now show that var(µn) = ℓ(a, n)σ2, for some function ℓ(a, n) that is independent

of σ2. Consider a typical equilibrium indifference condition

ti − aE [Θ|Θ ∈ [ti−1, ti]] = aE [Θ|Θ ∈ [ti, ti+1]]− ti.

A change of variables to z = θ
σ
, and thus dz = 1

σ
dθ, results in

E [Θ|Θ ∈ [ti−1, ti]] =

ti∫
ti−1

θκ 1
σ
ψ
(

θ2

σ2

)
dθ

Pr (Θ ∈ [ti−1, ti])
=

σ
zi∫

zi−1

zκψ (z2) dz

Pr (Z ∈ [zi−1, zi])
= σE [Z|Θ ∈ [zi−1, zi]] ,

with zi =
ti
σ
. Hence, the indifference condition can be written as

zi − aE [Z|Z ∈ [zi−1, zi]] = aE [Z|Z ∈ [zi, zi+1]]− zi,

which is independent of the variance. As a consequence, the standardized equilibrium

thresholds zi are independent of the variance.
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It follows that var(µn) is linear in σ2, var(µn) = ℓ(n, a)σ2, where ℓ(n, a) is inde-

pendent of σ2. 2

Proof of Lemma 2. EudelR (yS,Θ, a) = E
[
− (Θ− aΘ)2

]
= − (1− a)2 σ2. 2

Proof of Proposition 2. The proof proceeds in three steps. In Step a), we

compare a partition in the quantile space under distribution f to the same partition

in the quantile space under distribution g. We start with a = 1 and then extend the

comparison to 0 < a < 1. In Step b), we consider a (partial) quantile partition which

features a combination of f and g. In Step c), we combine Steps a) and b) and use an

iterative procedure to derive an equilibrium partition out of the (partial) partition.

This allows us to rank the equilibrium quantiles under f and g.

Step a) Let h = f+, g+ and H = F+, G+. As in Jewitt (1989) by a change of

variables, the conditional expectation can be rewritten as

µi+1 = E[Θ|Θ ∈ (ti, ti+1)] =

ti+1∫
ti

θ
h (θ)

H (ti+1)−H (ti)
dθ =

∫ ui+1

ui

H−1(z)

ui+1 − ui
dz

with ui+1 = H (ti+1) and ui = H (ti) .

Define QH(ui, ui+1) := H(µi+1) = H (E [Θ|H−1(ui) ≤ Θ ≤ H−1(ui+1)]).

Claim. The convex transform order implies an order of the quantiles of the condi-

tional expectations: If G−1
+ F+(θ) is convex, then QF+(ui, ui+1) ≤ QG+(ui, ui+1) for all

ui, ui+1, ui ≤ ui+1, i = 1, . . . , n− 1.

Proof. Assume G−1
+ F+(θ) is convex. Jensen’s inequality implies

G−1
+ F+

(∫ ui+1

ui

F−1
+ (z)

1

F+(F
−1
+ (ui+1))− F+(F

−1
+ (ui))

dz

)

≤
∫ ui+1

ui

G−1
+ F+F

−1
+ (z)

1

ui+1 − ui
dz =

∫ ui+1

ui

G−1
+ (z)

1

ui+1 − ui
dz.

Monotonicity of G+ implies that

F+

(∫ ui+1

ui

F−1
+ (z)

1

ui+1 − ui
dz

)
≤ G+

(∫ ui+1

ui

G−1
+ (z)

1

ui+1 − ui
dz

)
.
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This is equivalent to

F+

(
E
[
Θ|F−1

+ (ui) ≤ Θ ≤ F−1
+ (ui+1)

])
≤ G+

(
E
[
Θ|G−1

+ (ui) ≤ Θ ≤ G−1
+ (ui+1)

])
.

Thus, QF+(ui, ui+1) ≤ QG+(ui, ui+1). 2

Recall that the equilibrium thresholds satisfy tni − a · µn
i = a · µn

i+1 − tni , for i =

1, . . . , n. This can be written as tni = a
2
· (µn

i + µn
i+1). For now, take a = 1.

Applying Jensen’s inequality twice, we obtain

G−1
+ F+

(
1

2

∫ ui

ui−1

F−1
+ (z)

F+(F
−1
+ (ui))− F+(F

−1
+ (ui−1))

dz +
1

2

∫ ui+1

ui

F−1
+ (z)

F+(F
−1
+ (ui+1)− F+(F

−1
+ (ui)

dz

)
≤ 1

2
G−1

+ F+

(∫ ui

ui−1

F−1
+ (z)

1

ui − ui−1

dz

)
+

1

2
G−1

+ F+

(∫ ui+1

ui

F−1
+ (z)

1

ui+1 − ui
dz

)
≤ 1

2

∫ ui

ui−1

G−1
+ F+F

−1
+ (z)

1

ui − ui−1

dz +
1

2

∫ ui+1

ui

G−1
+ F+F

−1
+ (z)

1

ui+1 − ui
dz

=
1

2

∫ ui

ui−1

G−1
+ (z)

1

ui − ui−1

dz +
1

2

∫ ui+1

ui

G−1
+ (z)

1

ui+1 − ui
dz.

Hence

F+

(
1

2

∫ ui

ui−1

F−1
+ (z)

1

ui − ui−1

dz +
1

2

∫ ui+1

ui

F−1
+ (z)

1

ui+1 − ui
dz

)
≤ G+

(
1

2

∫ ui

ui−1

G−1
+ (z)

1

ui − ui−1

dz +
1

2

∫ ui+1

ui

G−1
+ (z)

1

ui+1 − ui
dz

)
.

Define the functions v (ui) := 1
2

(
1

ui−ui−1

ui∫
ui−1

F−1
+ (z) dz + 1

ui+1−ui

ui+1∫
ui

F−1
+ (z) dz

)

and z (ui) :=
1
2

(
1

ui−ui−1

ui∫
ui−1

G−1
+ (z) dz + 1

ui+1−ui

ui+1∫
ui

G−1
+ (z) dz

)
.

Then the inequality can be written as

G+

(
z (ui)

v (ui)
v (ui)

)
≥ F+ (v (ui)) for all ui ∈ [ui−1, ui+1] .
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Applying the inverse of G−1 and dividing by v (ui) , this is equivalent to

z (ui)

v (ui)
≥ G−1

+ F+ (v (ui))

v (ui)
for all ui ∈ [ui−1, ui+1] . (7)

We next want to introduce a ∈ (0, 1). We aim at showing that

G+

(
a
z (ui)

v (ui)
v (ui)

)
≥ F+ (av (ui)) for all a ∈ (0, 1) and all ui ∈ [ui−1, ui+1] .

Applying the inverse of G−1 and dividing by av (ui), this is equivalent to

z (ui)

v (ui)
≥ G−1

+ F+ (av (ui))

av (ui)
.

This is equivalent to (7) for a = 1. Moreover, note that the convex transform order

implies the star order (see Shaked and Shanthikumar (2007), p. 214): G−1
+ F+ (θ)

convex implies that
G−1

+ F+(θ)

θ
increases in θ.

To apply this order to our condition, note that av (u) increases in a and ranges

from 0 to v (ui) for a ∈ [0, 1] . Hence, setting a < 1 reduces the value of the right side

of the inequality, and since the inequality holds for a = 1, it continues to hold for

a < 1.

Step b) Recall that in the quantile space, the equilibrium condition tni = a
2
· (µn

i +

µn
i+1) can be written as

ui,h = H+

a
2

 1

ui,h − ui−1,h

ui,h∫
ui−1,h

H−1
+ (z) dz +

1

ui+1,h − ui,h

ui+1,h∫
ui,h

H−1
+ (z) dz


 ,

for h = f, g and H = F,G.

Fix the equilibrium thresholds ui−1,f and ui+1,f , and consider ui = ui,gf as the

following function that combines F and G

G+

a
2

 1

ui − ui−1,f

ui∫
ui−1,f

G−1
+ (z) dz +

1

ui+1,f − ui

ui+1,f∫
ui

G−1
+ (z) dz


 .
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By Jensen’s inequality, we have

G+

1

2

 1

ui − ui−1,f

ui∫
ui−1,f

G−1
+ (z) dz +

1

ui+1,f − ui

ui+1,f∫
ui

G−1
+ (z) dz




≥ F+

1

2

 1

ui − ui−1,f

ui∫
ui−1,f

F−1
+ (z) dz +

1

ui+1,f − ui

ui+1,f∫
ui

F−1
+ (z) dz


 ,

for all ui ∈ [ui−1,f , ui+1,f ]. Thus the same inequality holds in particular at ui,f . The

fact that
G−1

+ F (θ)

θ
is increasing in θ implies that

G+

a
2

 1

ui − ui−1,f

ui∫
ui−1,f

G−1
+ (z) dz +

1

ui+1,f − ui

ui+1,f∫
ui

G−1
+ (z) dz




≥ F+

a
2

 1

ui − ui−1,f

ui∫
ui−1,f

F−1
+ (z) dz +

1

ui+1,f − ui

ui+1,f∫
ui

F−1
+ (z) dz


 , (8)

for all ui ∈ [ui−1,f , ui+1,f ] .

Since condition (8) holds for any arbitrary (quantile) threshold ui, it holds for all

i = 1, . . . , n.

Step c) Denote the equilibrium quantile partition under f+, u
n
i,f , i = 1, . . . , n, as

uni,f = F+

a
2

 1

uni,f − uni−1,f

un
i,f∫

un
i−1,f

F−1
+ (z) dz +

1

uni+1,f − uni,f

un
i+1,f∫

un
i,f

F−1
+ (z) dz




for all i = 1, . . . , n. By convention, un0,f = 0 and unn+1,f = 1.

By Steps a) and b), we therefore have

uni,f ≤ G+

a
2

 1

uni,f − uni−1,f

un
i,f∫

un
i−1,f

G−1
+ (z) dz +

1

uni+1,f − uni,f

un
i+1,f∫

un
i,f

G−1
+ (z) dz


 .
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Let ti,gf := G−1
+

(
uni,f
)
. Then

ti,gf ≤ a

2

(
µi−1,g (ti−1,gf , ti,gf ) + µi,g (ti,gf , ti+1,gf )

)
. (9)

It follows from this inequality, that for any fixed ti−1,gf and ti+1,gf , the value of

ti = ti,gf is too low to be part of an equilibrium.

Given this observation, we consider the following iterative procedure: For any

fixed ti−1,gf , we denote the “partial equilibrium thresholds” under g by t
(∗)
j,g for all

j ≥ i , where the distribution is adjusted from f to g on the entire support, the

equilibrium thresholds above ti−1,gf are adjusted to g, tj = t
(∗)
j,g for j ≥ i, but the

equilibrium thresholds below ti−1,gf and not adjusted, tj = tj,gf for j < i.

At iteration step one, keep all thresholds ti = ti,gf for i = 1, . . . , n − 1 fixed and

let tn adjust to t
(∗)
n,g = t

(∗)
n,g (tn−1,gf ) . At t

(∗)
n,g, the sender is indifferent under g between

pooling upwards or downwards given that the receiver best replies with respect to g.

At iteration step l, keep all thresholds ti = ti,gf for i = 1, . . . , n − l fixed, adjust

threshold tn−l+1 to make the sender indifferent at t
(∗)
n−l+1,g = t

(∗)
n−l+1,g (tn−l,gf ), and

keep the sender indifferent at all thresholds t
(∗)
j,g for j ≥ n − l + 2. Note that all t

(∗)
j,g

depend recursively on the initial value tn−l,gf and on their respective predecessors

t
(∗)
n−l+1,g, . . . , t

(∗)
j−1,g.

At iteration step one, we observe that by (9) , for tn = tn,gf ,

tn − aµn,g (tn−1,gf , tn) ≤ aµn+1,g

(
tn,Sg

)
− tn.

By logconcavity of the density, µn+1,g

(
tn,Sg

)
and µn,g (tn−1,gf , tn) each increase in tn

less than one for one. Hence, there exists a unique t
(∗)
n,g ≥ tn,gf such that

t(∗)n,g − aµn,g(tn−1,gf , t
(∗)
n,g) = aµn+1,g(t

(∗)
n,g,Sg)− t(∗)n,g. (10)

Consider an arbitrary iteration step l < n. Suppose that all thresholds t
(∗)
j,g for j =

l + 1, . . . , n have been adjusted ‘weakly upwards.’

Since increasing thresholds increases the right side of (9) , the inequality continues
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to hold. It remains to be shown that there is a unique tl = t
(∗)
l,g such that

(
aµl+1,g(tl, t

(∗)
l+1,g)− tl

)
−
(
tl − aµl,g (tl−1,gf , tl)

)
= 0. (11)

Differentiating the left side of (11) with respect to tl, we get

−2 + a
∂

∂tl
µl,g (tl−1,gf , tl) + a

∂

∂tl
µl+1,g(tl, t

(∗)
l+1,g) + a

∂

∂tl+1

µl+1,g(tl, t
(∗)
l+1,g)

dt
(∗)
l+1,g

dtl
.

By logconcavity,
dt

(∗)
l+1

dtl
≤ 1 implies that this expression is negative. We show that

dt
(∗)
l+1

dtl
≤ 1 holds by induction: Totally differentiating (10) with respect to t

(∗)
n,g and

tn−1,gf , we find that

dt
(∗)
n,g

dtn−1,gf

=
a ∂
∂tn−1,gf

µn,g

(
tn−1,gf , t

(∗)
n,g

)
2− a ∂

∂t
(∗)
n,g

µn,g

(
tn−1,gf , t

(∗)
n,g

)
− a ∂

∂t
(∗)
n,g

µn+1,g

(
t
(∗)
n,g,Sg

) ≤ 1,

where the inequality is due to logconcavity of the density.

Next, suppose that
dt

(∗)
l+1

dtl
≤ 1. Totally differentiating (11) we get

dt
(∗)
l,g

dtl−1,gf

=
a ∂
∂tl−1,gf

µl,g(tl−1,gf , t
(∗)
l,g )

2− a ∂

∂t
(∗)
l,g

µl,g(tl−1,gf , t
(∗)
l,g )− a ∂

∂t
(∗)
l,g

µl+1,g(t
(∗)
l,g , t

(∗)
l+1,g)− a ∂

∂t
(∗)
l+1,g

µl+1,g(t
(∗)
l,g , t

(∗)
l+1,g)

dt
(∗)
l+1,g

dt
(∗)
l,g

≤ 1,

by logconcavity of the density and the assumption that
dt

(∗)
l+1

dtl
≤ 1. This concludes the

argument.

Switching back to quantiles, we have demonstrated tni,g ≥ ti,gf = G−1
+

(
uni,f
)
, and

hence

G+

(
tni,g
)
≥ uni,f = F+

(
tni,f
)
for all i.

2

Proof of Proposition 3. Assume that the equilibrium partition under distribution
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g, tni,g, satisfies the following condition,

Ef̂

[
Θf̂

∣∣∣Θf̂ ∈
[
tni−1,g, t

n
i,g

]]
+ Ef̂

[
Θf̂

∣∣∣Θf̂ ∈
[
tni,g, t

n
i+1,g

]]
>Eg

[
Θg|Θg ∈

[
tni−1,g, t

n
i,g

]]
+ Eg

[
Θg|Θg ∈

[
tni,g, t

n
i+1,g

]]
, (12)

where tnn+1,g = Sg and tn0,g = 0.

A sufficient (but not necessary) assumption for condition (12) to hold is that

MLRP+̂ is satisfied. For future reference, Proposition 4 provides different sufficient

conditions for (12) to hold.

Note that the monotone likelihood ratio property is preserved under truncation

to an arbitrary interval [ti−1, ti],

∂

∂θ

f̂+(θ)

F̂+(ti)−F̂+(ti−1)

g+(θ)
G+(ti)−G+(ti−1)

=
G+ (ti)−G+ (ti−1)

F̂+ (ti)− F̂+ (ti−1)

∂

∂θ

f̂+(θ)

g+(θ)
> 0.

It follows from (12) and the equilibrium conditions for tni,g, i = 1, . . . , n that

tni,g − aµi,f̂

(
tni−1,g, t

n
i,g

)
< aµi+1,f̂

(
tni,g, t

n
i+1,g

)
− tni,g for all i = 1, . . . , n. (13)

We now show that for all i, condition (12) implies that under distribution f̂ the

equilibrium critical types under distribution f̂ are strictly higher and strictly better

for the sender than the equilibrium critical types under distribution g.

Take the iterative procedure from the proof of Proposition 2 step c) with slightly

adjusted notation: for any fixed tni−1,g, denote the ‘partial equilibrium thresholds’

under f̂ by t
(∗)
j,f̂

for all j ≥ i, where the distribution is adjusted from g to f̂ on the

entire support, the equilibrium thresholds above tni−1,g are adjusted to f̂ , tj = t
(∗)
j,f̂

for

j ≥ i, but the equilibrium thresholds below tni−1,g are not adjusted, tj = tnj,g for j < i.

At iteration step one, keep all thresholds ti = tni,g for i = 1, . . . , n− 1 fixed at the

equilibrium values under g, and adjust tn to t
(∗)
n,f̂

= t
(∗)
n,f̂

(
tnn−1,g

)
. At t

(∗)
n,f̂

, the sender

is indifferent under f̂ between pooling upwards or downwards given that the receiver

best replies with respect to f̂ to the truncation above tnn−1,g. At iteration step l, keep

all thresholds ti = tni,g for i = 1, . . . , n − l fixed, adjust threshold tn−l+1 to make the
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sender indifferent at t
(∗)
n−l+1,f̂

= t
(∗)
n−l+1,f̂

(
tnn−l,g

)
, and keep the sender indifferent at all

thresholds t
(∗)
j,f̂

for j ≥ n − l + 2. Note that all t
(∗)
j,f̂

depend recursively on the initial

value tnn−l,g and on their respective predecessors t
(∗)
n−l+1,f̂

, . . . , t
(∗)
j−1,f̂

.

By inequality (12) , and the equilibrium condition tnn,g − aµn
n,g = aµn

n+1,g − tnn,g, we

know that for tn = tnn,g

tn − aµn,f̂

(
tnn−1,g, tn

)
< aµn+1,f̂

(
tn,S f̂

)
− tn.

By logconcavity of the density, µn+1,f̂

(
tn,S f̂

)
and µn,f̂

(
tnn−1,g, tn

)
each increase in tn

less than one for one. Hence, there exists a unique t
(∗)
n,f̂

> tnn,g such that

t
(∗)
n,f̂

− aµn,f̂ (t
n
n−1,g, t

(∗)
n,f̂

) = aµn+1,f̂ (t
(∗)
n,f̂
,S f̂ )− t

(∗)
n,f̂
. (14)

Consider an arbitrary iteration step l < n. Suppose that all thresholds t
(∗)
j,f̂

for j =

l + 1, . . . , n have been adjusted ‘upwards.’ Again, increasing the thresholds reinforce

inequality (13) . It remains to be shown that there is a unique tl = t
(∗)
l,f such that

(
aµl+1,f̂ (tl, t

(∗)
l+1,f̂

)− tl

)
−
(
tl − aµl,f̂

(
tnl−1,g, tl

))
= 0. (15)

Differentiating the left side of (15) with respect to tl, we get

−2 + a
∂

∂tl
µl,f̂

(
tnl−1,g, tl

)
+ a

∂

∂tl
µl+1,f̂ (tl, t

(∗)
l+1,f̂

) + a
∂

∂t
(∗)
l+1,f̂

µl+1,f̂ (tl, t
(∗)
l+1,f̂

)
dt

(∗)
l+1,f̂

dtl
.

By logconcavity,
dt

(∗)
l+1,f̂

dtl
≤ 1 implies that this expression is negative. We show that

dt
(∗)
l+1,f̂

dtl
≤ 1 holds by induction: Totally differentiating (14) with respect to t

(∗)
n,f̂

and

tnn−1,g, we find that

dt
(∗)
n,f̂

dtnn−1,g

=
a ∂
∂tnn−1,g

µn,f̂

(
tnn−1,g, t

(∗)
n,f̂

)
2− a ∂

∂t
(∗)
n,f̂

µn,f̂

(
tnn−1,g, t

(∗)
n,f̂

)
− a ∂

∂t
(∗)
n,f̂

µn+1,f̂

(
t
(∗)
n,f̂
,S f̂

) ≤ 1,

where the inequality is due to logconcavity of the density.
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Next, suppose that
dt

(∗)
l+1,f̂

dtl
≤ 1. Totally differentiating (15) we get

dt
(∗)
l,f̂

dtnl−1,g

=
a ∂
∂tnl−1,g

µl,f̂ (t
n
l−1,g, t

(∗)
l,f̂
)

2− a ∂

∂t
(∗)
l,f̂

µl,f̂ (t
n
l−1,g, t

(∗)
l,f̂
)− a ∂

∂t
(∗)
l,f̂

µl+1,f̂ (t
(∗)
l,f̂
, t

(∗)
l+1,f̂

)− a ∂

∂t
(∗)
l+1,f̂

µl+1,f̂ (t
(∗)
l,f̂
, t

(∗)
l+1,f̂

)
dt

(∗)
l+1,f̂

dt
(∗)
l,f̂

≤ 1

by logconcavity of the density and the assumption that
dt

(∗)
l+1,f̂

dtl
≤ 1. This concludes

the argument.

Thus, we have tn
i,f̂

≥ tni,g for i = 1, . . . , n. By the monotone likelihood ratio condi-

tion, we have µf̂ (t
n
i−1,f̂

, tn
i,f̂
) = µn

i,f̂
≥ µn

i,g = µg

(
tni−1,g, t

n
i,g

)
for i = 1, . . . , n + 1, where

tn
n+1,f̂

= tnn+1,g = Sg.

By Lemma 1, thresholds and receiver actions are linear in scale, so tn
i,f̂

= Sg

Sf
tni,f

for i = 1, . . . , n and µn
i,f̂

= Sg

Sf
µn
i,f for i = 1, . . . , n+ 1. 2

Proof of Proposition 4. To prove the proposition, we need to show that quantiles

and receiver induced actions are more risky in the sense of a mean-variance-preserving

spread under distribution F than under distribution G. Recall from the proof of

Proposition 2 that CTO+ implies that the quantiles satisfy F+

(
tni,f
)
≤ G+

(
tni,g
)
for

all i. Thus, to prove the proposition, it suffices to order the receiver’s induced actions

as well.

As Figure 3 and the uniform conditional variability order UCV+ reveal, the local

stochastic order depends on the location of the equilibrium thresholds considered.

By symmetry, we focus on the positive half of the support only. For intervals below

(above) the mode m, the truncated distributions under f+ dominate (are dominated

by) the truncated distributions under g+ in the likelihood ratio order. To have some

control over which order applies to which partition intervals – for example, to the

first n intervals – it is helpful to establish monotonicity of equilibria in the alignment

parameter a:

Lemma A.4 For any symmetric logconcave density and for any n, the equilibrium

critical types tni (a) and induced means µn
i (a) are strictly increasing in a for all i.
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Lemma A.4 is a corollary to Proposition 3.

The proof of Proposition 4, is completed through the following sequence of lemmas

that show that condition (12) is satisfied.

Lemma A.5 (Metzger and Rüschendorf (1991))

Let f+(θ)
g+(θ)

be unimodal with interior mode m. The function F+(x)
G+(x)

inherits unimodality

with mode m1 > m, the function (1−F+(x))
(1−G+(x))

inherits unimodality with mode m2 < m.

Moreover, there exists a unique x̂ such that F+ (θ) < G+ (θ) for θ ∈ (0, x̂), F+(x̂) =

G+(x̂), and F+ (θ) > G+ (θ) for θ ∈ (x̂,∞).

Proof. Metzger and Rüschendorf (1991) Section 2. 2

For the following lemma, since
Sh∫
x

(1−H+ (θ)) dθ =
∞∫
x

(1−H+ (θ)) dθ as H+(θ) =

1 for θ ≥ Sh, we unify notation and write
∫∞
x

for infinite as well as for finite supports,

[0,Sh].

Lemma A.6 (i) Let m denote the mode of the function f+(θ)
g+(θ)

. Conditional on θ ∈
[0,m), the distributions f+ and g+ satisfy the monotone likelihood ratio property.

(ii) The function

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

is unimodal in x ∈ [0,Sf ] with mode m′ ∈ (0,m2);

for 0 ≤ x ≤ (<)m′, we have E [Θf |Θf ≥ x] ≥ (>)E [Θg|Θg ≥ x].

Proof of Lemma A.6. (i) Follows from the proof of Lemma 5.

(ii) We first show that

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

is unimodal with mode m′. We then show that

the mode m′ is interior.

Straightforward differentiation gives

∂

∂x

∞∫
x

(1− F+ (θ)) dθ

∞∫
x

(1−G+ (θ)) dθ

=

− (1− F+ (x))
∞∫
x

(1−G+ (θ)) dθ + (1−G+ (x))
∞∫
x

(1− F+ (θ)) dθ(∞∫
x

(1−G+ (θ)) dθ

)2 .

The sign of the derivative is positive if and only if

(1− F+ (x))

∞∫
x

(1−G+ (θ)) dθ < (1−G+ (x))

∞∫
x

(1− F+ (θ)) dθ.
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Note that by an integration by parts for any x ∈ [0,Sh), we have that for h+ ∈
{f+, g+} and H+ ∈ {F+, G+}

E [Θ|Θ ≥ x] =

∞∫
x

θh+ (θ) dθ

1−H+ (x)
= x+

∞∫
x

(1−H+ (θ)) dθ

1−H+ (x)
.

Hence, ∂
∂x

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

⋛ 0 if and only if E [Θf |Θf ≥ x] ⋛ E [Θg|Θg ≥ x].

Since a mode is an extremum, it is either at the boundary or satisfies the first

order condition E [Θf |Θf ≥ x∗] = E [Θg|Θg ≥ x∗] . We next prove that there is at

most one such value x∗ = m′.

By Lemma A.5, the function (1−F+(x))
(1−G+(x))

is unimodal with modem2. Thus for x ≥ m2

the function is decreasing, equivalent to the conditional distribution of Θg conditional

on Θg ≥ x under distribution G+ first order stochastically dominating the conditional

distribution of Θf conditional on Θf ≥ x under F+: for x ≥ m2,

1− F+(x)

1−G+(x)
>

1− F+(θ)

1−G+(θ)
⇔ F+(θ)− F+(x)

1− F+(x)
>
G+(θ)−G+(x)

1−G+(x)
.

By implication, for x ≥ m2 we have E [Θf |Θf ≥ x] < E [Θg|Θg ≥ x] and

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

is strictly decreasing.

For x∗ < m2, recall that by the first order condition we have

− (1− F+ (x∗))

∞∫
x∗

(1−G+ (θ)) dθ + (1−G+ (x∗))

∞∫
x∗

(1− F+ (θ)) dθ = 0.

Differentiating a second time and evaluating at x∗, we get

f+ (x∗)

∞∫
x∗

(1−G+ (θ)) dθ − g+ (x∗)

∞∫
x∗

(1− F+ (θ)) dθ

< g+ (x∗)
1− F+ (x)

(1−G+ (x))

∞∫
x∗

(1−G+ (θ)) dθ − g+ (x∗)

∞∫
x∗

(1− F+ (θ)) dθ = 0,
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where the equality follows from the first order condition. For the inequality note that

the function (1−F+(x))
(1−G+(x))

is increasing if and only if the hazard rates of the distributions

satisfy
f+ (x)

1− F+ (x)
<

g+ (x)

(1−G+ (x))
,

thus for x < m2. The second derivative being negative implies that any stationary

point must be a maximum, hence there is at most one such point m′.

Finally, we prove that the mode m′ of

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

must be interior. For contra-

diction suppose that m′ is at the boundary. From the first part of the proof, m′ ≤ m2,

so that m′ cannot be at the upper end of the support. Thus suppose that m′ = 0, so

that ∂
∂x

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

< 0 for all x ∈ [0,Sf ].

The variance of the distribution over the whole support (positive and negative)

can by symmetry (h+ = 2h) and by integrating by parts twice be written as

∞∫
−∞

θ2h (θ) dθ =

∞∫
0

θ2h+ (θ) dθ = 2

∞∫
0

θ (1−H+ (θ)) dθ = 2

∞∫
0

∞∫
x

(1−H+ (θ)) dθdx,

with h ∈ {f, g}, h+ ∈ {f+, g+} , and H+ ∈ {F+, G+}.
We can further rewrite and integrate by parts to obtain

2

∞∫
0

∞∫
x

(1− F+ (θ)) dθdx = 2

∞∫
0

∞∫
x

(1− F+ (θ)) dθ

∞∫
x

(1−G+ (θ)) dθ

∞∫
x

(1−G+ (θ)) dθdx

= −2

∞∫
z

(1− F+ (θ)) dθ

∞∫
z

(1−G+ (θ)) dθ

∞∫
z

∞∫
x

(1−G+ (θ)) dθdx

∣∣∣∣∣∣∣∣
∞

0

+ 2

∞∫
0

∂

∂z

∞∫
z

(1− F+ (θ)) dθ

∞∫
z

(1−G+ (θ)) dθ

∞∫
z

∞∫
x

(1−G+ (θ)) dθdxdz

= 2

∞∫
0

(1− F+ (θ)) dθ

∞∫
0

(1−G+ (θ)) dθ

∞∫
0

∞∫
x

(1−G+ (θ)) dθdx+ 2

∞∫
0

∂

∂z

∞∫
z

(1− F+ (θ)) dθ

∞∫
z

(1−G+ (θ)) dθ

∞∫
z

∞∫
x

(1−G+ (θ)) dθdxdz

Substituting for µh+
=

∞∫
0

(1−H (θ)) dθ and σ2
h = 2

∞∫
0

∞∫
x

(1−H+ (θ)) dθdx, we have
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that

σ2
f −

µf+

µg+

σ2
g = 2

∞∫
0

∂

∂z

∞∫
z

(1− F+ (θ)) dθ

∞∫
z

(1−G+ (θ)) dθ

∞∫
z

∞∫
x

(1−G+ (θ)) dθdxdz.

We have that m′ = 0 implies
µf+

µg+
≤ 1. Moreover, by assumption σ2

f = σ2
g. Hence

the left side is non-negative. However, the right side is strictly negative due to our

contradictory hypothesis that ∂
∂z

∞∫
z
(1−F+(θ))dθ

∞∫
z
(1−G+(θ))dθ

< 0 for all z ∈ [0,Sf ]. 2

To complete the proof, we note that Lemma A.6 implies that (12) in the proof

of Proposition 3 applies for a sufficiently low. This in turn implies that for a fixed

sender partition (tni,g), the receiver’s induced actions are higher under f+ than under

g+. Hence, by the proof of Proposition 3, the equilibrium under f+ needs to feature

higher receiver equilibrium induced actions:

Lemma A.7 For any two symmetric, logconcave densities f, g with the same vari-

ance and with truncated densities f+, g+ that satisfy UCV+, there exists a unique a′

such that

E
[
Θf |Θf ≥ tnn,g (a

′)
]
= E

[
Θg|Θg ≥ tnn,g (a

′)
]
. Moreover, for a < a′, all n + 1 re-

ceiver equilibrium actions under distribution f+ are strictly higher than under g+,

a · µf

(
tni−1,f , t

n
i,f

)
> a · µn

g

(
tni−1,g, t

n
i,g

)
for all i.

Proof of Lemma A.7. By Lemma A.6, the tail-truncated expectation functions,

E [Θf |Θf ≥ x] and E [Θg|Θg ≥ x] , cross exactly once in the interior of the positive

half of the support. The intersection is at x = m′, the mode of the ratio

∞∫
x
(1−F+(θ))dθ

∞∫
x
(1−G+(θ))dθ

.

Hence, E
[
Θf |Θf ≥ tnn,g (a)

]
≥ E

[
Θg|Θg ≥ tnn,g (a)

]
if and only if tnn,g (a) ≤ m′. By

Lemma A.4, tnn,g (a) is strictly increasing in a, so by continuity there is a unique a′

such that tnn,g (a
′) = m′ and moreover, tnn,g (a) < m′ for a < a′.

By Lemma A.6, the distributions below tnn,g (a) satisfy that f+ (θ) /g+ (θ) increas-

ing in θ for all θ ≤ m if tnn,g (a) ≤ m. By Lemma A.6, m′ < m2. By Lemma A.5,

m2 < m. Hence, a ≤ a′ implies that f+ (θ) /g+ (θ) is increasing for all θ ≤ tnn,g (a) .

Since the monotone likelihood ratio property is preserved under multiplication of a
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constant, the truncated distribution below tnn,g (a) satisfies the monotone likelihood

ratio property, ∂
∂θ

f+(θ)

F+(tnn,g(a))
/ g+(θ)

G+(tnn,g(a))
> 0. More generally, the conditional distri-

butions truncated to any interval
[
tni−1,g (a) , t

n
i,g (a)

)
satisfy ∂

∂θ
f+(θ)

F+(tni,g(a))−F+(tni−1,g(a))
/

g+(θ)

G+(tni,g(a))−G+(tni−1,g(a))
> 0 for i = 1, . . . , n. As is well known, the monotone likelihood

ratio property implies the standard stochastic order (FOSD), which in turn implies

that inequality (12) is satisfied for all i = 1, . . . , n if we keep the partition at the equi-

librium partition under g+, (t
n
i,g). Therefore, we can apply the proof of Proposition 3

to conclude that both the equilibrium critical types and the receiver’s induced actions

are increased so that µf

(
tni−1,f (a) , t

n
i,f (a)

)
≥ µn

g

(
tni−1,g (a) , t

n
i,g (a)

)
for i = 1, . . . , n

for a ≤ a′. 2

2

Proof of Proposition 5. The proof of the second part regarding linear tail-

truncated expectations is given in Deimen and Szalay (2019). The proof of the first

part extends that proof to convex tail-truncated expectations. Before proving the

result by induction, we make some preliminary observations on the conditional prob-

abilities and the tail-truncated expectation function. A more detailed version of the

proof can be found in the working paper version Deimen and Szalay (2023).

For k = 2, . . . , n, define p̂k−1 as the probability that θ ∈ [tk−2, tk−1] conditional on

θ ≥ tk−2,

p̂k−1 ≡
F+ (tk−1)− F+ (tk−2)

1− F+ (tk−2)
.

Accordingly, 1 − p̂k−1 = 1−F+(tk−1)

1−F+(tk−2)
is the probability that θ ≥ tk−1, conditional on

θ ≥ tk−2. Note that p̂k−1µk−1 = E [θ| θ ≥ tk−2]− (1− p̂k−1)E [θ| θ ≥ tk−1] . Solving for

p̂k−1, we can write the probabilities as

p̂k−1 =
E [θ| θ ≥ tk−1]− E [θ| θ ≥ tk−2]

E [θ| θ ≥ tk−1]− µk−1

and 1− p̂k−1 =
E [θ| θ ≥ tk−2]− µk−1

E [θ| θ ≥ tk−1]− µk−1

.

Observe that (1− p̂k−2)·p̂k−1 is the probability of the event θ ∈ [tk−2, tk−1] conditional

on θ ≥ tk−3, and (1− p̂k−2) · (1− p̂k−1) is the probability of the event θ ≥ tk−1

conditional on θ ≥ tk−3. To see this, note that 1 − p̂k−2 = Pr [θ ≥ tk−2| θ ≥ tk−3] =
1−F+(tk−2)

1−F+(tk−3)
and recall that p̂k−1 =

F+(tk−1)−F+(tk−2)

1−F+(tk−2)
.
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Define, for all t > 0

α (t) :=
E [θ| θ ≥ t]− E [θ| θ ≥ 0]

t
=
ϕ(t)− ϕ(0)

t
.

Define µ+ := ϕ(0) = E [θ| θ ≥ 0]. Note that ϕ(t) = E [θ| θ ≥ t] can always be written

as the pseudo linear interpolation E [θ| θ ≥ t] = µ+ + t · α (t) . In the case of a linear

tail-truncated expectation, α(t) is a constant. In the convex case, we show that α(t)

is increasing in t:

For t = 0, we take the limit α (0) = limt→0
E[ θ|θ≥t]−µ+

t
= ∂

∂t
E [θ| θ ≥ t]|t=0 .

Likewise, by l’Hôpital’s rule, limt→∞
E[ θ|θ≥t]−µ+

t
= limt→∞

∂
∂t
E [θ| θ ≥ t] . Moreover,

α′ (t) =
∂
∂t

E[ θ|θ≥t]t−(E[ θ|θ≥t]−µ+)
t2

= 1
t

(
∂
∂t
E [θ| θ ≥ t]− α (t)

)
. By the fundamental theo-

rem of calculus α (t) =
E[ θ|θ≥t]−µ+

t
=

∫ t
0

∂
∂z

E[ θ|θ≥z]dz

t
. By the intermediate value theorem

for integrals, there is some value t∗ ∈ (0, t) such that
∫ t
0

∂
∂z

E[ θ|θ≥z]dz

t
= ∂

∂z
E [θ| θ ≥ z]

∣∣
z=t∗

.

Hence, α′ (t) = 1
t

(
∂
∂z
E [θ| θ ≥ z]

∣∣
z=t

− ∂
∂z
E [θ| θ ≥ z]

∣∣
z=t∗

)
≥ 0, where the inequality

follows from t∗ ∈ (0, t) and from convexity of E [θ| θ ≥ t] in t. Thus, α(t) is increasing

in t and hence minimal at α (0) =: α.

Recall the alignment parameter a ∈ (0, 1). Define ĉ := α · a.
Assume that ĉ ∈ (0, 2). Note that for all distributions with logconcave densities

this is not a constraint. In this case, α ≤ α(t) ≤ 1 for all t, since logconcave densities

have a decreasing mean residual life (see Bagnoli and Bergstrom (2005), Theorem 3

and Lemma 2) and α(t) > 1 for some t > 0 would imply that the mean residual life

at t is higher than at zero, a contradiction.

Let Xn
k

(
tnk−1

)
be equal to ĉ2 times the expected squared deviation of the truncated

means from µ+, conditional on θ ≥ tnk−1,

Xn
k

(
tnk−1

)
:= p̂nk

(
ĉµn

k − ĉµ+

)2
+ (1− p̂nk)X

n
k+1(tk).
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Induction hypothesis.

Xn
k

(
tnk−1

)
≥ Xn

k

(
tnk−1

)
:=

ĉ

2− ĉ

(
ĉµ+ + ĉµn

k

) (
ĉµ+ − ĉµn

k

)
+ 2

(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

)( ĉ

2− ĉ

(
µ+ + µn

k

)
− ĉµ+

)
.

Induction base. The proof of the induction base is a simplified version of the

proof of the induction step and therefore omitted.

Induction step.

By definition, Xn
k−1

(
tnk−2

)
= p̂k−1

(
ĉµn

k−1 − ĉµ+

)2
+ (1− p̂k−1)X

n
k

(
tnk−1

)
. Since

Xn
k

(
tnk−1

)
≥ Xn

k

(
tnk−1

)
, we have

Xn
k−1

(
tnk−2

)
≥ p̂k−1

(
ĉµn

k−1 − ĉµ+

)2
+ (1− p̂k−1)X

n
k

(
tnk−1

)
=: X̂n

k−1

(
tnk−2

)
.

Substituting for the probability p̂k−1 and for Xn
k

(
tnk−1

)
, we obtain

X̂n
k−1

(
tnk−2

)
=
ĉE
[
θ| θ ≥ tnk−1

]
− ĉE

[
θ| θ ≥ tnk−2

]
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

(
ĉµn

k−1 − ĉµ+

)2
+
ĉE [θ| θ ≥ tk−2]− ĉµn

k−1

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

 ĉ
2−ĉ

(
ĉµ+ + ĉµn

k

) (
ĉµ+ − ĉµn

k

)
+2
(
ĉE [θ| θ ≥ tk−1]− ĉµ+

) (
ĉ

2−ĉ

(
µ+ + µn

k

)
− ĉµ+

)
 .

Expanding the numerators of the probabilities by ±ĉµ+ and reorganizing accord-

ing to common factors, we can write X̂n
k−1

(
tnk−2

)
= An

k−1 +Bn
k−1, with

An
k−1 ≡

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

(
ĉµn

k−1 − ĉµ+

)2
+

ĉµ+ − ĉµn
k−1

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

·
(

ĉ

2− ĉ

(
ĉµ+ + ĉµn

k

) (
ĉµ+ − ĉµn

k

)
+ 2

(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

)( ĉ

2− ĉ

(
µ+ + µn

k

)
− ĉµ+

))
and

Bn
k−1 ≡

ĉµ+ − ĉE
[
θ| θ ≥ tnk−2

]
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

(
ĉµn

k−1 − ĉµ+

)2
+

ĉE
[
θ| θ ≥ tnk−2

]
− ĉµ+

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

·
(

ĉ

2− ĉ

(
ĉµ+ + ĉµn

k

) (
ĉµ+ − ĉµn

k

)
+ 2

(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

)( ĉ

2− ĉ

(
µ+ + µn

k

)
− ĉµ+

))
.
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The indifference condition of type tnk−1, ĉµ
n
k = 2αtnk−1 − ĉµn

k−1, allows us to substitute

for ĉµn
k . Hence,

An
k−1 =

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

(
ĉµn

k−1 − ĉµ+

)2
+

ĉµ+ − ĉµn
k−1

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

·
(

ĉ

2− ĉ

(
ĉµ+ + 2αtnk−1 − ĉµn

k−1

) (
ĉµ+ −

(
2αtnk−1 − ĉµn

k−1

))
+2
(
ĉE [θ| θ ≥ tk−1]− ĉµ+

)( 1

2− ĉ

(
ĉµ+ 2αtk−1 − ĉµn

k−1

)
− ĉµ+

))
.

Collecting terms with the common factor
ĉE[ θ|θ≥tnk−1]−ĉµ+

ĉE[ θ|θ≥tnk−1]−ĉµn
k−1

(
ĉµn

k−1 − ĉµ+

)
and simpli-

fying, we get

An
k−1 =

ĉ

2− ĉ

(
ĉµ+ − ĉµn

k−1

) (
ĉµ+ + ĉµn

k−1

)
+

ĉµ+ − ĉµn
k−1

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

 ĉ
2−ĉ

(
−4
(
αtnk−1

)2
+ 4αtnk−1cµk−1

)
+
(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

) (
4

2−ĉ

(
αtnk−1 − ĉµn

k−1

))
 .

Similarly, we can derive

Bn
k−1 = 2

(
ĉE
[
θ| θ ≥ tnk−2

]
− ĉµ+

)( ĉ

2− ĉ

(
µ+ + µn

k−1

)
− ĉµ+

)

+
ĉE
[
θ| θ ≥ tnk−2

]
− ĉµ+

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

 ĉ
2−ĉ

(
−4
(
αtnk−1

)2
+ 4αtnk−1ĉµ

n
k−1

)
+
(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

) (
4

2−ĉ
αtnk−1 − 4

2−ĉ
ĉµn

k−1

)
 .

We aim at showing that the second lines in Ak and Bk respectively are both positive.

We then obtain a lower bound on X̂n
k−1 by discarding them.

Note that

ĉµ+ − ĉµn
k−1

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

+
ĉE
[
θ| θ ≥ tnk−2

]
− ĉµ+

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

=
ĉE
[
θ| θ ≥ tnk−2

]
− ĉµn

k−1

ĉE
[
θ| θ ≥ tnk−1

]
− ĉµn

k−1

.

Since E
[
θ| θ ≥ tnk−1

]
> E

[
θ| θ ≥ tnk−2

]
> E

[
θ| θ ∈

[
tnk−2, t

n
k−1

]]
= µn

k−1, both the

denominator and the numerator are positive.

By the definitions of α, α, and by convexity, ĉE
[
θ| θ ≥ tnk−1

]
−ĉµ+ = ĉα

(
tnk−1

)
tnk−1 ≥

ĉαtnk−1.Moreover, since a < 1 and tnk−1 ≥ µn
k−1, αt

n
k−1− ĉµn

k−1 = α
(
tnk−1 − aµn

k−1

)
≥ 0.
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Taken together, we get

(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

)( 4

2− ĉ
αtnk−1 −

4

2− ĉ
ĉµn

k−1

)
≥ ĉαtnk−1

(
4

2− ĉ
αtnk−1 −

4

2− ĉ
ĉµn

k−1

)
,

and therefore

ĉ

2− ĉ

(
−4
(
αtnk−1

)2
+ 4αtnk−1ĉµ

n
k−1

)
+
(
ĉE
[
θ| θ ≥ tnk−1

]
− ĉµ+

)( 4

2− ĉ
αtnk−1 −

4

2− ĉ
ĉµn

k−1

)
≥ ĉ

2− ĉ

(
−4
(
αtnk−1

)2
+ 4αtnk−1ĉµ

n
k−1

)
+ ĉαtnk−1

(
4

2− ĉ
αtnk−1 −

4

2− ĉ
ĉµn

k−1

)
= 0.

Note that all inequalities involving α are strict for the case in which α
(
tnk−1

)
> α.

This implies that the second lines in An
k and Bn

k are indeed positive. Hence, we have

Xn
k−1

(
tnk−2

)
≥ X̂n

k−1

(
tnk−2

)
≥ ĉ

2− ĉ

(
ĉµ+ − ĉµn

k−1

) (
ĉµ+ + ĉµn

k−1

)
+2
(
ĉE
[
θ| θ ≥ tnk−2

]
− ĉµ+

)( ĉ

2− ĉ

(
µ+ + µn

k−1

)
− ĉµ+

)
.

This concludes the induction step.

It follows that Xn
1 (tn0 ) ≥ ĉ

2−ĉ

(
ĉµn

1 + ĉµ+

) (
ĉµ+ − ĉµn

1

)
.

By definition, Xn
1 (tn0 ) = E

[(
ĉµn

i − ĉµ+

)2]
. Canceling ĉ, we get

E
[(
µn
i − µ+

)2] ≥ αa

2− αa

(
µ2
+ − (µn

1 )
2)

with strict inequality if E [θ| θ ≥ t] is strictly convex in t. Decentering again and

noting that by the law of iterated expectations E
[
µn
i µ+

]
= E

[
(µ+)

2
]
, we can write

E
[
(µn

i )
2] ≥ αa

2− αa

(
µ2
+ − (µn

1 )
2)+ µ2

+.

Recall that ϕ(0) = µ+ and α = ϕ′(0). Thus, for limit n→ ∞, we have µn
1 → 0 and

var(µ∞) = E
[
(µ∞

i )2
]
≥ αa

2− αa
µ2
+ + µ2

+ =
2

2− ϕ′(0)a
ϕ(0)2.
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2

Proof of Lemma 3. Straightforward integration gives for any [t, t] ⊆
[
0,− s

δ

]
,

E
[
Θ|Θ ∈ [t, t]

]
=
s+ t

1− δ
− 1

1− δ

(
t− t

)
1−

(
1+ δ

s
t

1+ δ
s
t

)− 1
δ

. (16)

For the special case of t = − s
δ
and t ∈

[
0,− s

δ

]
, we get

E [Θ|Θ ≥ t] = E [Θ|Θ ≥ 0] +
1

1− δ
· t = s+ t

1− δ
. (17)

Hence, the generalized Pareto distribution features linear tail-truncated expectations.

Therefore, we can apply the value characterization of Deimen and Szalay (2019),

which derives the expected utility of a limit equilibrium given in (3) as an upper

bound on the expected utilities of finite equilibria. The variance of µn in a Even

equilibrium is given by

var(µn) =
2

2− a
1−δ

µ2
+ −

a
1−δ

2− a
1−δ

(µn
1 )

2 .

The variance of µn in an Odd equilibrium is given by

var(µn) =

(
1− Pr

[
Θ ∈

[
−aµ

n
2

2
,
aµn

2

2

)])
·

(
2

2− a
1−δ

µ2
+ +

a
1−δ

2− a
1−δ

µn
2µ+

)
.

Deimen and Szalay (2019) shows that a limit equilibrium exists for the special case of

δ = 0. Here, we extend the proof of existence of a limit equilibrium in Proposition 1 to

the class of all logconcave densities, which includes the generalized Pareto distribution

with δ ∈ [−1, 0]. 2

Proof of Proposition 6. One can show that our limit equilibrium yields a higher

payoff than any finite equilibrium in the communication game. Compare the receiver’s
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expected utility in a limit equilibrium under communication

EuR (aµ∞,Θ, a) = a2
(
var(µ∞)− σ2

)
= a2

(
2− 1

1−δ

2− a
1−δ

σ2 − σ2

)
= −a2σ2 1− a

2− a− 2δ

to the receiver’s expected utility under delegation EuR (Θ,Θ, a) = − (1− a)2 σ2. The

receiver prefers delegation over communication if

− (1− a)2 σ2 ≥ −a2σ2 1− a

2− a− 2δ
⇔ δ ≥ 2− 3a

2− 2a
.

2

Proof of Lemma 4. Since the Gauss distribution features a convex tail-truncated

expectation (see Sampford (1953)), the minimal slope for the tail-truncated expecta-

tion is obtained at θ = 0.

∂

∂t
E [Θ|Θ ≥ t]

∣∣∣∣
t=0

= (E [Θ|Θ ≥ t]− t)
f (t)

1− F (t)

∣∣∣∣
t=0

=
ϕ(0)

σ
2

1√
2π
.

Moreover, we have E [Θ|Θ ≥ t]|t=0 = ϕ(0) = σ f(t)
1−F (t)

∣∣∣
t=0

= σ
√
2√
π
. Substituting in (3)

for ϕ(0) and the minimal slope, we obtain the result. 2

Lemma A.8 Denote the Gauss distribution by F and the Laplace distribution by G,

i) then F and G satisfy CTO+.

ii) then F and G feature a unimodal likelihood ratio f+
g+
.

iii) then F induces a higher value of communication than G for a < 0.858.

Proof of Lemma A.8. i) Follows from van Zwet (1964) p.59, as the Gauss

distribution has an increasing hazard rate.

ii) Let g+ be the Laplace and f+ be the Gauss ‘half’-densities. Then

f+ (θ)

g+ (θ)
=

1√
2πσ

e−
θ2

2σ2

√
2
σ
e−

√
2

σ
θ

=
e

(√
2

σ
θ− θ2

2σ2

)
2
√
π

,

and we observe that f+(θ)
g+(θ)

is increasing for low levels of θ and decreasing for high levels
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of θ.

iii) Comparing the values of communicating under the Gauss and Laplace distri-

butions, we find that the Gauss distribution induces a higher value of communication

than the Laplace:

a2
( 4

π

2− a 2
π

σ2 − σ2

)
≥ a2

(
1

2− a
σ2 − σ2

)
, (18)

which holds for a ≲ 0.858. 2

Proof of Proposition 7. For the Laplace distribution, communication is preferred

over delegation if

a2
(

1

2− a
σ2 − σ2

)
≥ − (1− a)2 σ2, (19)

which holds if and only if a ≤ 2
3
. Therefore, for a ≤ 2

3
, (19) and (18) form a chain

of inequalities implying that communication is also preferred over delegation for the

Gauss distribution.

If the state follows a Gauss distribution, using the lower bound for communication,

we obtain that communication is preferred over delegation if

a2
( 4

π

2− a 2
π

σ2 − σ2

)
≥ − (1− a)2 σ2,

which holds for a ≲ 0.702. Hence, for a ∈
(
2
3
, 0.702

)
delegation is strictly optimal if

the state follows a Laplace distribution while communication is strictly optimal if the

state follows a Gauss distribution. 2

Proof of Lemma 5. Since the supports are assumed to be R, we have supp(f) ⊆
supp(g). It remains to be shown that the ratio f+(θ)

g+(θ)
is unimodal with mode m an

interior maximum.

Logconcavity of the ratio f+(θ)
g+(θ)

is equivalent to ∂
∂θ

(
∂
∂θ

f+(θ)

f+(θ)
−

∂
∂θ

g+(θ)

g+(θ)

)
≤ 0. That

the difference is falling implies that one of three cases holds: either the difference is

positive for all θ,
∂
∂θ

f+(θ)

f+(θ)
>

∂
∂θ

g+(θ)

g+(θ)
, negative for all θ,

∂
∂θ

f+(θ)

f+(θ)
<

∂
∂θ

g+(θ)

g+(θ)
, or changes

sign once, i.e., there is some value m such that
∂
∂θ

f+(θ)|θ=m

f+(m)
=

∂
∂θ

g+(θ)|θ=m

g+(m)
and

∂
∂θ

f+(θ)

f+(θ)
>
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∂
∂θ

g+(θ)

g+(θ)
for θ ∈ [0,m) and

∂
∂θ

f+(θ)

f+(θ)
<

∂
∂θ

g+(θ)

g+(θ)
for θ ∈ (m,S].

The first two cases amount to MLRP on the positive half and can be ruled out

by the following argument: Monotonicity of the likelihood ratio for all θ > 0 implies

that F+ (θ) and G+ (θ) are ranked in the standard stochastic order (one distribution

first order stochastically dominates the other one, FOSD). By symmetry, this implies

that F (θ) and G (θ) are ordered in the convex order (SOSD). Finally, this implies

that the distributions must have different variances, contradicting our assumption.

Hence, case three applies, implying that f+
g+

is unimodal with unique interior mode

m. By concavity the mode is a maximum. 2

Proof of Lemma 6. We show that the convex transform order CTO+ is transitive.

Note that

G−1
+ F+ (θ) = G−1

+ H+H
−1
+ F+ (θ) .

Since G−1
+ H+ (θ) and H−1

+ F+ (θ) are increasing functions, G−1
+ F+ (θ) is convex if

G−1
+ H+ (θ) and H−1

+ F+ (θ) are convex.

Recall that a Laplace distribution is a two-sided exponential distribution. van

Zwet (1964) shows that for H+ the exponential distribution, H−1
+ F+ (θ) is convex

for any distribution F+ with an increasing hazard rate. Since logconcavity of the

density implies an increasing hazard rate (Bagnoli and Bergstrom (2005)), H−1
+ F+ (θ)

is convex. Likewise, by van Zwet (1964), H−1
+ G+ (θ) is concave for any distributionG+

with a decreasing hazard rate. Again, logconvexity of the density implies a decreasing

hazard rate (Bagnoli and Bergstrom (2005)).

Hence, we need to show that H−1
+ G+ (θ) is concave if and only if G−1

+ H+ (θ) is

convex. We note that H−1
+ G+ (θ) is concave if and only if

g+(G−1
+ (u))

h+(H−1
+ (u))

is decreasing in

u ∈ [0, 1] while G−1
+ H+ (θ) is convex if and only if

h+(H−1
+ (u))

g+(G−1
+ (u))

is increasing in u ∈ [0, 1] .

Hence, H−1
+ F+ (θ) is convex if and only if H−1

+ G+ (θ) is concave. 2
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