Kenichi Nagasawa - University of Warwick
"Treatment effect estimation with noisy conditioning variables"
Abstract
I develop a new identification strategy for treatment effects when noisy measurements of unobserved confounding factors are available. I use proxy variables to construct a random variable conditional on which treatment variables become exogenous. The key idea is that, under appropriate conditions, there exists a one-to-one mapping between the distribution of unobserved confounding factors and the distribution of proxies. To ensure sufficient variation in the constructed control variable, I use an additional variable, termed excluded variable, which satisfies certain exclusion restrictions and relevance conditions. I establish asymptotic distributional results for semiparametric and flexible parametric estimators of causal parameters. I illustrate empirical relevance and usefulness of my results by estimating causal effects of attending selective college on earnings
Additional information:
- Speaker: Kenichi Nagasawa
- Time: Thursday, 11.05.2023, 16:00 - 17:00
- Location: Faculty Lounge, Room 0.036 / Online via Zoom
- Further links:
- Organizer: Statistics Group
- Contact:
- Almut Lunkenheimer
- +49 228 73-9228
- ifs@uni-bonn.de